首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
本文采用一种结构为Ag/MoO_3/Ag的金属/氧化物/金属(M_1/O/M_2)叠层替代ITO作为OLED器件的阳极,研究Ag/MoO_3/Ag叠层结构变化对于OLED器件电极透过率、亮度、光谱等性能的影响。实验采用真空蒸镀方法制备了一系列器件,器件结构为Ag/MoO_3/Ag/MoO_3(10nm)/NPB(40nm)/Alq_3(60nm)/LiF(1nm)/Al(150nm)。对比器件的电压-电流密度、电压-亮度、光谱特性等数据,表明Ag/MoO_3/Ag的结构为20/20/10(nm)时,器件性能较好。在驱动电压为11V时,其亮度达到18 421cd/m~2,电流效率为2.45cd/A;且因器件中存在微腔效应,其EL光谱蓝移,半高宽变窄。但考虑到530nm处其电极透过率仅为17%,所以经换算该器件实际发光亮度比ITO电极器件更高。该Ag/MoO_3/Ag叠层阳极制作相对简单,经优化后在顶发射和柔性OLED器件方面将具有一定的应用前景。  相似文献   

2.
丁磊  张方辉  马颖  张麦丽 《半导体学报》2012,33(1):013003-4
在本文中,我们报导了一种Al/MoO3复合阳极结构的高性能OLEDs。发现该结构器件的独特效率是由于在阳极/有机界面上的界面偶极子有很大的下降,从而导致空穴注入到常用的空穴传输分子上能力得到增强。强微腔作用进一步增强了电致发光强度,同时由于Al/MoO3易于加工,我们成功的在朔料基板上研制出发光均匀的大面积柔性OLEDs。  相似文献   

3.
《Organic Electronics》2008,9(6):964-967
A transparent Al/WO3/Au anode is introduced to fabricate high efficiency organic light-emitting devices (OLEDs). By optimizing the thicknesses of each layers of the Al/WO3/Au structure, the transmittance of Al(7 nm)/WO3(3 nm)/Au(13 nm) has reached over 55%. Concerning the performance of OLEDs using the optimized anode, the electroluminescence (EL) current efficiency and brightness are enhanced and the EL spectrum is greatly narrowed as compared to the OLEDs using indium-tin-oxide (ITO) as the anode. The results indicate that the metal/metal oxide/metal transparent electrode is a good structure for the anode of high performance OLEDs. In addition, Al/WO3/Au can function as a composite transparent electrode for top-emitting OLEDs.  相似文献   

4.
Electroluminescence degradation mechanisms in small-molecule-based organic light-emitting diodes (OLEDs) have been investigated. We focused on intrinsic degradation phenomena that determine the decrease in the optical power of OLEDs during standard operation. The study was carried out on simplified OLED structures, by means of combined optical and electrical characterization techniques. The results of this analysis provide information on the physical processes responsible for OLED degradation, suggesting a strong correlation between the reduction in the luminance intensity of the devices and the creation of both positive trapped charge and neutral electron traps at the Alq3/NPD interface. The evidence reported in this paper supports the hypothesis that degradation is due to the instability of the cationic Alq3 species.  相似文献   

5.
Charge trapping and interface-state generation in very thin nitride/oxide (4-nm Si3N4+8-nm SiO2) composite gate insulators are studied as a function of gate electrode work function and bottom oxide thickness. The behavior of the trapped positive charge under bias-temperature stress after avalanche electron injection (AEI) is investigated. Evidence is presented that secondary hole injection from the anode (gate/Si3N4 interface) and subsequent trapping near the SiO2-Si interface result in a turnaround of the flatband voltage shift during AEI from the substrate. Just like the thermal oxides on Si, slow-state generation near the SiO2-Si interface and boron acceptor passivation in the surface-space charge layer of the Si substrate are also observed after AEI in these nitride/oxide capacitors, and they are found to be strongly related to the secondary hole injection and trapping. Finally, interface-state generation can take place with little secondary anode hole injection and is enhanced by the occurrence of hole trapping  相似文献   

6.
We investigated the highly flexible, transparent and very low resistance ZnS/1st Ag/ZnO/2nd Ag/WO3 (ZAZAW) multilayer electrodes on PET substrate as an anode in flexible organic light-emitting diodes (OLEDs). A theoretical calculation was first conducted to obtain the optimal thickness of the ZAZAW multilayer for high transparency. Its measured luminous transmittance was over 80% in the visible range with a very low sheet resistance of 2.17 Ω/sq., and it had good mechanical flexibility due to the ductility of Ag. Ag’s effect on optical and electrical properties was also studied. Flexible OLEDs devices that were fabricated on ZAZAW multilayer anode showed good hole injection properties comparable to those of ITO-based OLEDs due to the use of WO3 as a hole injection layer. However, the electroluminescent properties of the ZAZAW-based OLEDs varied depending on WO3 thickness. Although the transmittance of the ZAZAW electrode was reduced by tuning the WO3 thickness to adjust the microcavity effect, the device efficiency could be enhanced above that of ITO-based OLEDs.  相似文献   

7.
The dynamic characteristics of multilayer organic light-emitting diodes (OLEDs) determine the refresh rate in display applications, and are of great importance for practical organic displays. They also serve as an important tool in studying the transport mechanisms in organic conductors. Here, the modulation characteristics of several conventional small-molecule OLED structures [consisting of ITO/PEDOT:PSS(50 nm)/TPD(50 nm)/Alq3(various)/LiF(1 nm)/Al(90 nm)] are measured and analyzed in terms of mobility in and thickness of the Alq 3 layer. Their optical response was shown to be limited by electron transport across the Alq3. Extracted electron mobilities were about 2-4times10-6 cm2/Vmiddots (consistent with that reported in the literature) and near-identical values for mobility were obtained from devices of different thicknesses, suggesting that this method measures mobility independent of interface trap charging. This novel technique is a complement to large signal time of flight or delay time measurements (which can include interface and trap charging during the measurement) and can serve as a flexible method to study transport in actual devices  相似文献   

8.
To improve the performance of bottom-emission organic light-emitting diodes (BEOLEDs), the effect of oxygen plasma treatment duration on the electrical properties of multi-metal Ni/Ag/Ni thin film anode was investigated. The results revealed that a Ni/Ag/Ni thin-film layer formed upon oxygen plasma treatment for 60 s. Our indium-free bottom-emission OLEDs effectively increased the electrical and optical properties by improving their electron–hole recombination and doing a strong micro-cavity effect with the semitransparent multi-metal anode. The green bottom-emission OLEDs show a luminance of 14,280 cd/m2, a luminous efficiency of 8.5 cd/A, external quantum efficiency 2.6% EQE, a Commission Internationale de L’Eclairage coordinates of (0.32, 0.58) on flexible substrate.  相似文献   

9.
We have demonstrated an indium-tin-oxide free organic light-emitting device (OLED) with improved efficiency by doping poly (3,4-ethylene dioxythiophene):poly (styrene sulfonate) (PEDOT:PSS) with graphene oxide (GO) as a composite anode. In comparison with a pure PEDOT:PSS anode, 55% enhancement in efficiency has been obtained for the OLEDs based on the PEDOT:PSS/GO composite anode at an optimal condition. The PEDOT:PSS/GO composite anode shows a lower hole-injection barrier, which contributes to the improved device efficiency. Moreover, both high transmittance and good surface morphology similar to that of the pure PEDOT:PSS film also contribute to the enhanced efficiency. It is obvious that composite anode will generally be applicable in organic optoelectronic devices which require smooth and transparent anode.  相似文献   

10.
The authors report the application of rapid thermal processing (RTP) to the fabrication of ultrathin (~10 nm) high-quality fluorinated oxides in O2+NF3 (100 ppm diluted in N2). NF3 was used as the F source gas and was introduced either prior to rapid thermal oxidation (RTO) or with O2 during the initial stage of RTO. The oxidation rate was enhanced because of the presence of NF3. In addition, F depth profiles in fluorinated oxides were dependent upon the process conditions. The electrical characteristics of MOS capacitors have been studied and correlated with the chemical properties. The initial interface state density (Dt) was found to decrease with F incorporation. The results suggest that the interfacial F incorporation plays a major role in determining the interface hardness for both hot-electron and radiation damages  相似文献   

11.
Low-frequency noise was characterized in Si0.7Ge0.3 surface channel pMOSFETs with ALD Al2O3/HfO2/Al2O3 stacks as gate dielectrics. The influences of surface treatment prior to ALD processing and thickness of the Al2O3 layer at the channel interface were investigated. The noise was of the 1/f type and could be modeled as a sum of a Hooge mobility fluctuation noise component and a number fluctuation noise component. Mobility fluctuation noise dominated the 1/f noise in strong inversion, but the number fluctuation noise component, mainly originating from traps in HfO2, also contributed closer to threshold and in weak inversion. The number fluctuation noise component was negligibly small in a device with a 2 nm thick Al2O3 layer at the SiGe channel interface, which reduced the average 1/f noise by a factor of two and decreased the device-to-device variations.  相似文献   

12.
Epitaxial LaNiO3 metallic oxide thin films have been grown on c-axis oriented YBa2Cu3O7-δ thin films on LaAlO3 substrates by pulsed laser deposition technique and the interface formed between the two films has been examined by measuring the contact conductance of the same. The specific contact conductance of the interface measured using a modified four probe method was found to be 1.4 to 6×104 ohm-1 cm-2 at 77 K. There are indications that contact conductance can be brought closer to that obtained for noble metal-YBCO interface  相似文献   

13.
GaN MIS diodes were demonstrated utilizing AlN and Ga2O3(Gd2O3) as insulators. A 345 Å of AlN was grown on the MOCVD grown n-GaN in a MOMBE system using trimethylamine alane as Al precursor and nitrogen generated from a SVT RF N2 plasma. For the Ga2O3(Gd2O3) growth, a multi-MBE chamber was used and a 195 Å oxide was E-beam evaporated from a single crystal source of Ga5Gd3O12. The forward breakdown voltage of AlN and Ga2O3(Gd2O3) diodes are 5 and 6 V, respectively, which are significantly improved over 1.2 V from that of a Schottky contact. From the C–V measurements, both kinds of diodes showed good charge modulation from accumulation to depletion at different frequencies. The insulator/GaN interface roughness and the thickness of the insulator were measured with X-ray reflectivity.  相似文献   

14.
热退火技术是集成电路制造过程中用来改善材料性能的重要手段。系统分析了两种不同的退火条件(氨气氛围和氧气氛围)对TiN/HfO2/SiO2/Si结构中电荷分布的影响,给出了不同退火条件下SiO2/Si和HfO2/SiO2界面的界面电荷密度、HfO2的体电荷密度以及HfO2/SiO2界面的界面偶极子的数值。研究结果表明,在氨气和氧气氛围中退火会使HfO2/SiO2界面的界面电荷密度减小、界面偶极子增加,而SiO2/Si界面的界面电荷密度几乎不受退火影响。最后研究了不同退火氛围对电容平带电压的影响,发现两种不同的退火条件都会导致TiN/HfO2/SiO2/Si电容结构平带电压的正向漂移,基于退火对其电荷分布的影响研究,此正向漂移主要来源于退火导致的HfO2/SiO2界面的界面偶极子的增加。  相似文献   

15.
Thermodynamically stable, low Dit amorphous Ga2 O3-(100) GaAs interfaces have been fabricated by extending molecular beam epitaxy (MBE) related techniques. We have investigated both in situ and ex situ Ga2O3 deposition schemes utilizing molecular beams of gallium oxide. The in situ technique employs Ga2O3 deposition on freshly grown, atomically ordered (100) GaAs epitaxial films in ultrahigh vacuum (UHV); the ex situ approach is based on thermal desorption of native GaAs oxides in UHV prior to Ga2O3 deposition. Unique electronic interface properties have been demonstrated for in situ fabricated Ga2O3-GaAs interfaces including a midgap interface state density Dit in the low 1010 cm-2 eV-1 range and an interface recombination velocity S of 4000 cm/s. The existence of strong inversion in both n- and p-type GaAs has been clearly established. We will also discuss the excellent thermodynamic and photochemical interface stability. Ex situ fabricated Ga2O3-GaAs interfaces are inferior but still of a high quality with S=9000 cm/s and a corresponding Dit in the upper 1010 cm-2 eV-1 range. We also developed a new numerical heterostructure model for the evaluation of capacitance-voltage (C-V), conductance-voltage (G-V), and photoluminescence (PL) data. The model involves selfconsistent interface analysis of electrical and optoelectronic measurement data and is tailored to the specifics of GaAs such as band-to-band luminescence and long minority carrier response time τR. We will further discuss equivalent circuits in strong inversion considering minority carrier generation using low-intensity light illumination  相似文献   

16.
This study proposes flexible organic light-emitting diodes (OLEDs) grown on polyestersulfone (PES) using Al-doped zinc oxide (AZO) as the anode, fabricated by the dual-plasma-enhanced chemical vapor deposition (DPEMOCVD) system. The experimental results including crystalline structure, optical, and electrical characteristics indicate that the quality of AZO films grown on PES depends on the deposition temperature and Al content. The optimal deposition temperature and Al content for AZO film are 185  C and 2.88 at%, respectively. Further increasing or decreasing the deposition temperature and Al content degrades the quality of AZO films. The optimal AZO film deposited on the PES substrate was used as the anode for flexible OLED. It shows a similar performance compared to OLEDs using commercial indium–tin-oxide (ITO) as the anode on glass, and represents enhanced characteristics to that of the commercial ITO anode on a flexible polyethylene naphthalate (PEN) substrate. This indicates that the DPEMOCVD-deposited AZO film on the PES substrate can be the anode for flexible OLEDs.  相似文献   

17.
There are many challenges for a direct application of graphene as the electrodes in organic electronics due to its hydrophobic surfaces, low work function (WF) and poor conductance. The authors demonstrate a modified single-layer graphene (SLG) as the anode in organic light-emitting diodes (OLEDs). The SLG, doped with the solution-processed titanium suboxide (TiOx) and poly(3,4-ethylenedio-xythiophene)/poly(styrene sulfonic acid) (PEDOT:PSS), exhibits excellent optoelectronic characteristics with reduced sheet resistance (Rsq), increased work function, as well as over 92% transmittance in the visible region. It is notable that the Rsq of graphene decreased by ∼86% from 628 Ω/sq to 86 Ω/sq and the WF of graphene increased about 0.82 eV from 4.30 eV to 5.12 eV after a modification by using the TiOx–PEDOT:PSS double interlayers. In addition, the existence of additional TiOx and PEDOT:PSS layers offers a good coverage to the PMMA residuals on SLG, which are often introduced during graphene transfer processes. As a result, the electrical shorting due to the PMMA residues in the device can be effectively suppressed. By using the modified SLG as a bottom anode in OLEDs, the device exhibited comparable current efficiency and power efficiency to those of the ITO based reference OLEDs. The approach demonstrated in this work could potentially provide a viable way to fabricate highly efficient and flexible OLEDs based on graphene anode.  相似文献   

18.
Rapid thermal processing (RTP) was applied to the fabrication of the ultrathin (~10 nm) high-quality fluorinated oxides in O2+NF3. NF3 (diluted in N2) was used as the F source gas and was introduced either prior to rapid thermal oxidation (RTO) or with O2 during the initial stage of RTO. The electrical characteristics of MOS capacitors have been studied and correlated with the chemical properties. It was found that SiO2 with a small amount of F incorporated shows reduced interface state generation under F-N injection, whereas excessive F incorporation is detrimental  相似文献   

19.
林慧  于军胜  张伟 《光电子快报》2012,8(3):197-200
A high-effective bottom anode is essential for high-performance top-emitting organic light-emitting devices (OLEDs). In this paper, Ag-based top-emitting OLEDs are investigated. Ag has the highest reflectivity for visible light among all metals, yet its hole-injection properties are not ideal for anodes of top-emitting OLED. The performance of the devices is significantly improved using the molybdenum oxide as anode buffer layer at the surface of Ag. By introducing the molybdenum oxide, the hole injection from Ag anodes into top-emitting OLED is largely enhanced with rather high reflectivity retained.  相似文献   

20.
因其低成本和高的储锂能力,Fe2 O3作为一种极具潜力的锂离子电池负极材料而受到广泛的关注.采用水热法一步合成Fe2 O3,并应用在锂离子电池负极材料.采用XRD、SEM和TEM对样品的晶型与形貌进行分析,表明合成样品为树枝状Fe2 O3单晶.在电池的电化学测试中,树枝状Fe2 O3单晶电极表现出优异的循环稳定性(在1...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号