首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
采用扫描电镜、透射电镜、X射线衍射仪、显微硬度计、拉伸试验机和冲击试验机等分析手段对C61齿轮钢试样经1000 ℃淬火+回火处理后组织和碳化物的析出行为及力学性能进行了研究。结果表明,试验钢在淬火和深冷状态下,一次碳化物基本溶解,基体为板条马氏体组织,此时固溶强化作用提供了较好的强韧化基础。当回火温度为420 ℃时,析出的M3C渗碳体为其提供了较高的强度,但这种析出相的存在对冲击性能具有较大的损伤;M3C渗碳体会在482 ℃回火时溶解,10~20 nm尺寸的棒状M2C碳化物在板条马氏体内的弥散析出,提供了较高强度的同时改善了冲击性能。随着回火温度的继续升高,大量逆转变奥氏体生成,不仅有效提高冲击性能,同时强度下降也更为明显;且M2C碳化物粗化长大,第二相的强化作用降低。综合得出,试验钢在482 ℃的回火条件下能达到较好的强韧化匹配,抗拉强度和屈服强度分别为1781 MPa和1546 MPa,冲击吸收能量为97 J,硬度峰值为52 HRC。  相似文献   

2.
采用扫描电镜和透射电镜等手段研究了回火温度对N63钢组织及性能的影响。结果表明,N63钢具有良好的抗回火稳定性,260~600℃回火几乎未生成逆转变奥氏体,该温度区间内低温回火的析出相主要为ε-碳化物,当回火温度升高至480℃附近时基体析出M2C碳化物,抗拉强度和屈服强度分别达到峰值,为1483 MPa和1138 MPa,然后随回火温度的升高迅速下降,600℃回火时抗拉强度仅为1009 MPa,此时N63钢马氏体基体板条分解严重,析出相为渗碳体和M23C6;冲击吸收能量随回火温度先下降后升高再下降,420℃回火冲击吸收能量最低,为79 J。综合不同回火温度下的微观组织和力学性能,N63钢在480℃回火具有优异的强韧性匹配。  相似文献   

3.
采用力学性能测试、SEM、TEM、XRD等试验方法研究了回火温度和时间对二次硬化型超高强度钢AerMet340的力学性能及微观组织的影响。结果表明,AerMet340钢的回火曲线呈现明显的二次硬化现象,获得最佳综合性能的回火工艺为482 ℃×5 h空冷;抗拉强度、规定塑性延伸强度峰值分别为2460 MPa、2061 MPa,对应的回火温度分别为450、468 ℃;在低温回火时,AerMet340钢主要由回火马氏体和ε-碳化物组成,高于468 ℃回火时,基体中弥散分布着细小针状M2C碳化物,这是该钢获得高强韧性的主要原因之一;随着回火温度的上升,合金碳化物M2C的主要合金成分Fe、Cr、Mo含量明显升高,使得M2C的晶格常数发生变化,并逐渐脱离了与基体的共格关系。  相似文献   

4.
研究了回火温度对不同Mo含量的40CrNi3MoV试验钢组织和力学性能的影响。结果表明,试验钢在525 ℃回火时开始析出M2(C, N)相,在550~575 ℃回火时M2(C, N)相含量达到峰值。随回火温度的升高,试验钢硬度和强度降低,但塑性和韧性则升高。由于M2(C, N)相的二次硬化作用,将Mo含量从0.43%提高到1.06%后,40CrNi3MoV钢经575 ℃回火后的抗拉强度可以达到1500 MPa级,同时具有良好的塑性和韧性。  相似文献   

5.
采用780℃亚温淬火和不同温度回火,探究回火温度对40CrMoVNbTi钢组织和力学性能的影响。对淬火不同温度回火40CrMoVNbTi钢的力学性能变化及显微组织和冲击断口断貌进行观察和分析。结果表明,780℃亚温淬火,随回火温度的提高,40CrMoVNbTi钢的强度下降,塑性呈上升趋势,300℃回火冲击吸收能量值最低,出现回火脆性。200℃回火组织为回火马氏体和残留奥氏体,其抗拉强度为2150 MPa,KV2为23.8 J;550~600℃回火组织为回火索氏体,韧性较好,其抗拉强度为1190~1070 MPa,KV2为94~123 J,满足AISI 4140钢的力学性能要求,具有较高的冲击性能。  相似文献   

6.
对含钒42CrMo钢进行了870℃油淬和540~650℃回火,采用扫描电子显微镜、电子背散射衍射和透射电子显微镜检测了钢的-40℃冲击韧性、显微组织、应力、位错密度和晶粒取向差。结果显示:随着回火温度的升高,钢的-40℃冲击吸收能量从26 J提高到了118 J,回火索氏体中的碳化物从条状转变为球状;较高温度回火的钢比较低温度回火的钢具有更多的大角度晶界、较小的应力和较低的位错密度;回火索氏体中的条状、针状碳化物主要为Fe3C,球状碳化物主要为M7C3和VC,弥散分布的球状碳化物有利于改善钢的低温冲击韧性。  相似文献   

7.
采用力学性能测试、光学显微镜(OM)、透射电镜(TEM)、X射线衍射(XRD)等材料分析方法研究了淬火温度对2200 MPa级超高强度钢的力学性能及微观组织的影响。结果表明,试验钢最佳淬火温度为1025 ℃,再经后续热处理能获得最佳的强韧性匹配,此时抗拉强度为2244 MPa,屈服强度为1836 MPa,U型缺口冲击吸收能量为59 J,断裂韧性为57.7 MPa·m1/2。淬火温度较低时,出现粗大一次碳化物富Mo型M6C碳化物,严重影响强度和韧性。随着淬火温度升高,一次碳化物逐渐减少,直至1000 ℃完全消失,当淬火温度高于1025 ℃时晶粒显著粗化,晶粒尺寸成为主要的负面影响因素。  相似文献   

8.
通过光学显微镜、扫描电镜、X射线衍射、透射电镜、洛氏硬度、冲击测试和拉伸试验等研究了淬火+冷处理和高温回火循环热处理工艺对14Cr14Co12Mo5低碳马氏体轴承钢组织性能的影响。结果表明:经淬火、两次冷处理及高温回火后,不仅可以细化试验钢中的马氏体板条,而且能有效促进残留奥氏体向马氏体转变,马氏体板条宽度从511.5 nm细化至116.0 nm,马氏体体积分数从78.4%增加至87.9%。此外,在高温回火过程中板条马氏体内的M23C6和M7C3细小碳化物不断析出,不仅可以提高试验钢的强度和硬度,而且细小弥散分布的碳化物也可以提高其韧性。经淬火+冷处理和高温回火工艺处理后,试验钢的抗拉强度为1624 MPa,硬度为49.5 HRC,冲击韧性为136 J/mm2,实现了强韧性的良好匹配。  相似文献   

9.
研究了不同温度回火后30Cr2MnSiNi2WMo钢的微观组织。结果表明,210 ℃回火后钢的组织为具有高密度位错的板条马氏体及与基体共格的M2C;510 ℃回火后α相发生明显回复,M2C长大弥散分布于基体。Cr含量的增加,Mo、W元素的加入,提高了30Cr2MnSiNi2WMo钢的回火抗力。  相似文献   

10.
对含0.13%C、0.15%Si、1.06%Mn、0.84%Cu、3.09%Ni、0.51%Cr、0.61%Mo、0.02%Ni、0.05%V(质量分数)的高强高韧钢进行了860℃水淬,随后460~580℃回火。检测了钢的显微组织和力学性能,并采用Modified Williamson-Hall(MWH)方法计算了钢中位错密度。结果表明:随着回火温度的升高,钢中马氏体发生分解和回复,位错密度降低,从而室温抗拉强度降低、塑性提高;纳米富铜相和NbC的析出导致回火后钢的屈服强度高于淬火态;460和500℃回火的钢中M23C6碳化物的析出导致晶界断裂强度和低温冲击韧性降低,而更高温度回火的钢中分布于马氏体板条界的条状M23C6碳化物减少,由于组织回复造成的软化作用其低温冲击韧性明显改善;580℃回火的钢具有良好的力学性能,其屈服强度为1 066.5 MPa,断后伸长率为18.8%,-40℃纵向冲击吸收能量为105 J。  相似文献   

11.
曹鑫  李权  杨银辉 《金属热处理》2021,46(12):40-45
为探索30Cr16Mo1VN钢最佳的热处理工艺,采用冲击、拉伸试验机、洛氏硬度计、OM、SEM、XRD、TEM研究了淬、回火温度对该钢组织和力学性能的影响。结果表明:该钢最佳的淬火温度为1050 ℃,淬火后存在少量M23C6碳化物和M2N氮化物阻碍晶界迁移,其平均晶粒尺寸为14.1 μm,而大部分碳/氮化物固溶进基体中,导致Ms点降低,残留奥氏体含量增至59.2%。经-73 ℃冷处理后,大量残留奥氏体转变成马氏体,硬度提高至57 HRC。该钢300 ℃回火时具有良好的强韧性匹配,抗拉强度达2030 MPa,断面收缩率为10.0%。回火后基体发生回复,位错密度降低,随回火温度的升高,基体上析出细小弥散的球状碳化物阻碍位错运动产生二次硬化,450 ℃回火时出现硬度峰值。回火温度低于500 ℃时,该钢的硬度值皆大于55 HRC,具有良好的回火稳定性。  相似文献   

12.
采用洛氏硬度计、扫描电镜和透射电镜等方法研究了在M2高速钢中添加微量Co对其回火组织和性能的影响。结果表明,两种试验钢回火之后的组织都为回火马氏体+少量残留奥氏体+碳化物。添加0.82%(质量分数,下同)Co使得M2高速钢的峰值硬度提高了约0.3 HRC,使600 ℃保温48 h之后的红硬性提高了约0.8 HRC,可以看出微量Co添加对M2高速钢的硬度和红硬性的提升效果不大,抗弯强度提高了约950 MPa,而使得M2高速钢的韧性略有降低,均为脆性断裂。通过对试验钢中的碳化物进行观察发现,两种试验钢析出的一次碳化物主要为大颗粒的MC型和M6C型碳化物,通过TEM分析之后发现,添加0.82%的Co使得试验钢中马氏体板条上长条针状M2C型的二次碳化物析出数量增多。  相似文献   

13.
以稀土5Cr钢为对象,研究了热处理工艺(870、900、930 ℃保温50 min水淬,670、690、710 ℃保温90 min回火)对其组织及第二相析出行为的影响。结果表明,试验钢经870 ℃淬火后,组织未完全奥氏体化;随着淬火温度的升高,试验钢完全奥氏体化,原始奥氏体平均晶粒尺寸从900 ℃的13.49 μm增大到930 ℃的15.01 μm,且组织均匀性明显下降。合适的淬火温度为900 ℃。在670~710 ℃回火后,组织分布为回火屈氏体、回火屈氏体+回火索氏体、回火索氏体。回火后第二相为分布在基体上的Cr7C3碳化物及在界面聚集的Cr23C6碳化物。随着回火温度的升高,Cr23C6碳化物比例逐渐增加。为避免回火过程中M23C6型碳化物的聚集和粗化,合适的回火温度为690 ℃。  相似文献   

14.
利用SEM和TEM研究了固溶温度对Cr-Co-Mo马氏体钢碳化物演变行为及力学性能的影响。结果表明,随着固溶温度的升高,基体中M6C碳化物回溶,屈服强度下降而室温冲击吸收能量递增;原始奥氏体晶粒由于缺乏晶界上球形M6C碳化物的钉扎作用迅速长大,细晶强化效果减弱,但晶界处裂纹源减少使得韧性提高。在1120 ℃固溶后晶粒尺寸最大,而马氏体基内析出与基体共格的纳米棒状M2C碳化物平均粒径最小、单位面积百分数最高和颗粒间距最短,因此即使损失了细晶强化效果,但析出强化增补了强度,使得屈服强度在晶粒长大后不发生大幅下降;同时,由于共格析出提高了基体的变形协调性,韧性也未发生降低。  相似文献   

15.
采用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)等研究了多次回火处理对经正火+淬火处理的中碳中铬合金钢组织及性能的影响。结果表明:980℃淬火后合金钢的组织为淬火马氏体,经550℃一次回火及二次回火处理后,组织转变为回火索氏体;回火过程中析出的碳化物主要为M23C6及M3C型合金碳化物,分布于基体及界面处,起到了析出强化的作用;与一次回火处理相比,二次回火处理后合金钢的硬度与抗拉强度基本不变,但冲击吸收能量提高了15%,断后伸长率提高了12.5%,表现出较好的综合力学性能。  相似文献   

16.
石成朋  刘平  张柯  李伟  杨旗  郝庆国 《金属热处理》2020,45(11):157-162
对退火态高氮不锈轴承钢进行真空高压气淬并深冷后在不同温度下回火空冷处理,采用光学显微镜、X射线衍射仪、场发射环境扫描电镜、场发射透射电镜、洛氏硬度计和万能材料试验机,研究并分析了不同回火温度对高氮不锈轴承钢显微组织与力学性能的影响。结果表明:当回火温度由180 ℃升高到550 ℃时,硬度、抗拉强度及屈服强度呈现先下降后上升再迅速下降的变化趋势;试验钢降碳增氮,组织中没有粗大的共晶碳化物存在。当回火温度为500 ℃时,基体组织为回火索氏体,碳化物M23C6和氮化物Cr2N细小弥散均匀分布于基体上;在500 ℃回火时出现了二次硬化,强度和硬度达到峰值,这与碳氮化物弥散强化有关。采用1050 ℃真空气淬60 min+深冷处理(-100 ℃×2 h)+500 ℃空冷2 h回火工艺可以获得良好的综合力学性能。  相似文献   

17.
采用SEM、HRTEM等试验方法,对2000 MPa级低成本复合强化超高强度AIR0509钢的二次硬化行为进行了研究,并与目前广泛应用于航空领域的AerMet100钢进行了对比。试验结果表明:试验钢具有明显的二次硬化现象,在535 ℃回火4 h时达到最佳强韧性配合,室温抗拉强度、屈服强度以及U型缺口冲击吸收能量分别为2020 MPa、1780 MPa和68 J,同淬火态相比屈服强度提高了480 MPa,这是由析出的复合强化相碳化物M2C与金属间化合物β-NiAl共同作用的结果;此外,同AerMet100钢相比,AIR0509钢抗过时效的能力更强。  相似文献   

18.
研究了Si-Mn-Cr-Ni系低合金高强钢锻件在不同热处理工艺下的显微组织和力学性能。结果表明,试验钢经820℃正火后,锻件组织细化效果较好且分布均匀,再经920℃淬火和280℃低温回火后,其硬度为43.9 HRC,冲击吸收能量KV2为82.6 J,抗拉强度为1513.35 MPa,屈服强度为1221.92 MPa,伸长率为14.65%,此时组织为回火板条马氏体且晶粒尺寸细小,晶粒度为8.3级,达到最佳的强韧性匹配,试验钢的综合力学性能最优。  相似文献   

19.
采用复合电冶熔铸技术,制备了以WC颗粒为增强体,5CrNiMo模具钢为基体的WC/钢复合材料,WC颗粒含量为45wt%。采用金相显微镜、扫描电子显微镜、能谱仪、电子背散射衍射仪和X射线衍射分析仪研究了复合材料中WC的形态和退火、锻造、淬火与回火处理对WC增强体转变的影响。结果表明,WC/钢复合材料中以三角形或矩形的WC为主;通过退火和锻造处理,碳化物溶解,共晶组织碎化;淬火加热温度升高,碳化物溶解加速,基体上分布大量细小的二次碳化物,共晶碳化物变化不明显;回火温度提高,碳化物分布更加均匀化,颗粒圆整性增强,碳化物聚集现象减少。存在的碳化物类型主要为WC颗粒、较大的Fe3W3C颗粒、Fe3W3C或M7C3枝晶状碳化物、弥散分布的Fe3W3C或M23C6二次碳化物。  相似文献   

20.
通过正交试验及方差分析研究了正火次数、回火温度、回火时间对10CrNiCu低合金铸钢力学性能和组织的影响。结果表明:多次正火能够细化晶粒,从而提升铸钢屈服强度并提升其低温冲击性能。提高回火温度及增加回火时间可使铸钢铁素体及偏析带内的贝氏体中的M/A岛发生回复,从而导致屈服强度大幅降低,并在一定程度上提升低温冲击性能。但回火时间过长,碳化物和纳米Cu颗粒析出量增加,尺寸增大,导致低温冲击性能的提升并不显著。采用900℃正火2次+630℃回火4 h的热处理方案时,铸钢的屈服强度保持在440 MPa,-40℃和-80℃KV2分别达到246 J和137 J的较高水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号