首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 578 毫秒
1.
研究了快速热压工艺和In掺杂对Ag0.8Pb18SbTe20基热电材料微结构和热电性能的影响。采用真空封管熔炼法成功制备n型Ag0.8Pb18InxSb1-xTe20(x=0.25,0.5,0.75,1)合金粉末材料,同时结合高能球磨使合金粉末粒度达到微米量级。利用快速热压烧结工艺,在693 K温度、15 MPa压力下烧结30 min,制备块体热电材料。研究结果表明,In对Sb的取代增加了热电材料的电导率,改善了材料的热电性能。当In掺杂量x=1时,材料于623 K的电导率达到最大值239 S/cm;当x=0.5时,材料于623 K的功率因子达到最大值3.1×10-3W/(m.K2)。  相似文献   

2.
为了进一步提高PbTe系列合金的热电性能和降低生产成本,采用溶剂热反应合成平均粒度为500 nm的PbTe粉末,以所合成的PbTe粉末为主要原料通过封管熔炼法制备(AgSbTe2)x(Pb0.5SnvTe) 1-x(x=0,0.05,0.1,0.15,0.2)系合金.所得合金锭经过高能球磨制成微米级的超细合金粉,再通过快速热压烧结制备测试用的多晶试样,所有试样的相对密度均达到90%以上.通过XRD和SEM等手段分析材料的物相组成和微观结构,研究x的变化对于该体系材料热电性能(电阻率、Seebeck系数、热导率和ZT值)的影响.研究表明,当X取值为0.1时该体系材料的热电性能得到最优化,在575 K时取得最人的ZT值为1.093.  相似文献   

3.
采用水热法制备平均粒度约300 nm的六方相Bi2Te3纳米粉末.再以Bi2Te3粉末为原料,采用封管熔炼法制备N型(Bi2Te3)0.9(AgxBi2-xSe3)0.1(x为Ag的摩尔分数.x=0.1,0.2,0.3,0.4)合金粉体材料,通过快速热压制备N型(Bi2Te3)0.9(AgxBi2-xSe3)0.1块状热电材料.在300~550 K温度范围内研究该材料的热电性能与Ag掺杂量之间的关系,以及热压工艺对材料热电性能的影响.结果表明在775 K,40 MPa条件下烧结20 min后材料的相对密度达到97%以上,晶粒大小在3岬左右.当Ag掺杂量x=0.2时,在300 K温度下热导率达到最小值0.71 W/mK,同时获得最高的热电优值(ZT值)1.07.  相似文献   

4.
本研究利用粉末冶金方法制备(Bi_2Te_3)_x/(PbSe_3)_(1-x),先将Bi_2Te_3与PbSe粉末均匀混合,然后冷压压力500 MPa,300 K保温烧结1 h,最后对其微观结构与热电性质进行了探讨。研究结果表明冷压时施予极大压力使得试片中出现许多细小颗粒,并有大量纯Se相析出,严重影响其热电性质。x=0.4时试片电阻率高于x=0.5与0.6时,室温下x=0.5时试片电阻率最小;x=0.5时试片的席贝克系数最大,约176.8μV/K,即席贝克系数随PbSe含量增加而变大;x=0.5与0.6时试片的热导率在温度高于280 K以后趋于平衡,而x=0.4时试片的热导率在温度高于230 K以后呈下降趋势,室温300 K下x=0.5时试片的热导率最大,约1.772 W/(m·K)。所有试片的ZT皆随测量温度的升高而增大,且x=0.5时试片于室温下具有最大的ZT,可达0.008 5。  相似文献   

5.
针对半导体制冷行业P型Bi_2Te_3基制冷晶棒的生产与加工过程中产生的废粉料,经过真空煅烧、1次熔炼及2次熔炼除去粉料中的杂质,获得Bi_2Te_3基粉末,然后加压烧结,制备P型Bi_2Te_3基块体材料,测定材料的热电性能,并通过在除杂后的Bi_2Te_3基粉末中加入单质Sb和Te,进行成分优化。结果表明,废粉料的回收率达到85.73%以上,采用废粉料制备的P型块体Bi0.53Sb1.3Te3合金在室温下的电导率仅为331.79 S/cm,热电优值为0.75。在除杂后的废粉料中加入单质Sb和Te后制备的Bi0.36Sb1.64Te3合金在室温下的电导率达到970 S/cm,热电优值为1.13,350 K下的热电优值为1.23,并且在300~470 K温度范围内的热电优值都超过1.0,性能超过了采用高纯原材料生产的P型区域熔炼产品,能够满足生产企业的要求。  相似文献   

6.
采用溶胶凝胶法合成Ca3-xYbxCo4O9+δ(x=0,0.15,0.30,0.45)化合物粉体,以粉体为原料结合放电等离子烧结(SparkPlasmaSinte-ring,SPS)制备出致密的块体材料。研究了Yb掺杂对热电化合物电传输特性的影响。结果表明:在300~850K温度范围内,每个样品的See-beck系数又随着温度的升高而单调增大,而Yb取代Ca可使材料的电阻率(ρ)和Seebeck系数同时增加,这是因为三价的Yb3+取代二价的Ca2+将使化合物的载流子浓度降低,当x=0.30时,材料的功率因子最佳,850K时达到0.32×10-3W.K-.2m-1。  相似文献   

7.
以Li2CO3、NaHCO3、FeC2O4·2H2O和NH4H2PO4为原料,采用水热法制备LiFePO4,溶液中几种离子的物质的量比n(Li1+):n(Na+):n(Fe2+):n(PO43+)为1:x:1:1(x=0、0.1、0.2、0.3和0.5)。采用聚乙烯醇为碳源,对LiFePO4粉末进行高温碳化包覆处理,得到LiFePO4/C复合正极材料。利用X射线衍射(XRD)、扫描电镜(SEM)、拉曼光谱、激光粒度仪和恒流充放电技术研究水热溶液中NaHCO3的浓度x对LiFePO4的形貌和电性能的影响。结果表明:LiFePO4的粒度随NaHCO3浓度增加而减小,x从0增加到0.5时LiFePO4的粒度从8.08μm降低至3.06μm;当x=0和0.1时水热反应后存在未反应完的草酸亚铁杂质,当x=0.2、0.3和0.5时,LiFePO4粉末为纯相;当x=0.5时粉末表现出良好的电化学性能,其振实密度达到1.15 g/cm3,室温下0.1C倍率下放电的放电比容量达到144.1(mA·h)/g,1C倍率下放电的放电比容量保持在118.2(mA·h)/g。  相似文献   

8.
本文采用自蔓延法,以去离子水为溶剂,柠檬酸为螯合剂,硝酸盐和氧化物为原料成功的制备了NaxSm0.3Ca2.7-xCo4O9+δ(x=0,0.1,0.15,0.2)化合物粉体,表征了粉体的粒度分布,并对Na0.2Sm0.3Ca2.5Co4O9+δ粉体进行了粉末压形实验,实验结果表明:NaxSm0.3Ca2.7-xCo4O9+δ(x=0.2)陶瓷粉体的压形规律符合黄培云压制方程,压制模量M为0.095223 MPa,而非线性指数m为4.000317。探索了Na+和Sm3+共掺杂对其块体在473~973 K温度区间内的热电性能影响,其中Na0.2Sm0.3Ca2.5Co4O9+δ在973 K时的电阻率和Seebeck系数分别为6.044 mΩ.cm和175.4μVK-1,热电转换功率因子达到5.09×10-6W m-1K-2。  相似文献   

9.
研究了烧结密度、合金元素及其含量对铁基温压烧结材料性能的影响。结果表明, 温压铁基合金材料强度和硬度随着密度的增加不断上升。不同Ni含量的Fe xNi 0.5Mo 1Cu 0.5C(x=1.5、2、2.5、3、4)系合金的密度增加到7.45 g/cm3 左右时, 其烧结强度和硬度分别达到1 225~1 389 MPa和HB200~HB350。不同Cu含量的Fe xCu 0.5C(x=1、2、3)系合金的密度增加到7.45 g/cm3 左右时, 其烧结强度和硬度分别达到1 000~1 114MPa、HB150~HB200。Ni、Mo等合金元素具有优异的烧结强化效果。  相似文献   

10.
在氩气保护下,采用机械合金化法制备Mg_(10)Al_((7-x))Li_2Ti_x(x=0,1,2,3)合金,并通过XRD、SEM以及DSC等手段对合金进行表征。结果表明,适量的Ti替代Al可以提高合金的吸氢量、降低合金的初始氢化/脱氢温度和提高合金氢化/脱氢动力学性能。Mg_(10)Al_((7-x))Li_2Ti_x(x=1,2,3)合金样品比Mg10Al7Li2合金的初始氢化温度都降低了62K,而初始脱氢温度则分别降低了77、98和59K。当Ti的替代量为x=2时,合金的综合储氢性能最好。  相似文献   

11.
通过溶剂热法制备出六方相Bi2 Te3纳米粉体,采用真空封管熔炼法得到Sb掺杂的Bi0.5Sb1.5Te3合金.采用溶剂热法合成粒度为40 nm的Ag2 Te纳米粉体,并通过高能球磨工艺将其掺入Bi0.5Sb1.5Te3合金,从而得到p-(Ag2 Te)x(Bi0.5 Sb1.5 Te3)1-x合金(x为Ag2 Te摩...  相似文献   

12.
近年来,热电材料研究取得重要突破,不仅传统Bi2Te3、PbTe基热电材料性能得到提升,同时还发现一批新型高性能热电材料,如SnSe、GeTe等。热电材料性能的提升不仅取决于材料成分、结构及缺陷,还与制备工艺密不可分。机械合金化(mechanical alloying,MA)结合放电等离子体烧结(spark plasma sintering,SPS)的粉末冶金技术是制备热电材料的重要方法,该方法简单、高效,获得的晶粒尺寸较小,同时可以引入纳米结构和缺陷,有助于降低晶格热导率,获得高热电性能。此外,基于机械合金化结合放电等离子体烧结技术制备出的块体材料具有更优的力学性能,可以有效地增强热电器件的使用寿命。本文介绍了机械合金化与放电等离子体烧结方法制备热电材料的基本原理和关键影响因素,并概述了利用该方法制备的碲化物、硫化物和硒化物基热电材料的研究进展。  相似文献   

13.
Stablen-type alloys significantly superior to PbTe over the temperature range 300° to 800°K have not yet been reported. While in many cases alloying of PbTe with other materials lowered its thermal conductivity, the degradation of the electrical properties more than offset this gain. A study will be described indicating that the figure-of-merit in an alloy system can reach a maximum at low alloy concentrations (<15 pct) rather than at high concentrations by maximizing the difference in atomic mass and lattice parameter of the two alloying materials. This concept led to the selection of the PbTe-GeTe system for investigation. Experimental results in this system will be compared to theoretical predictions and evaluated. Results will be discussed of optimization of both alloy composition and doping, and of the preparation ofn-type alloys with a figure-of-merit roughly 40 pct greater than PbTe in the range 300° to 800°K. The solubility ofp-type dopants were found to decrease on alloying such that carrier concentrations required for high temperature operation could not be achieved.  相似文献   

14.
Yb x Co 4 Sb 12 polycrystals were fabricated by vacuum melting combined with hot-press sintering.The effect of Yb-filling on thermoelectric property of unfilled skutterudite CoSb 3 was investigated,which indicated the enhancement of the power factor of the material.Transport properties of materials changed from semi-conductor to semi-metal during the measurement of electrical conductivity,which indicated the change of electronic band structure.The maximum value of electrical conductivity was about 190000 S/m at 300 K for all samples.On the basis of Yb-filling,power factor of Yb 0.2 Co 4 Sb 12 reached 5-6 mW/(m·K) during the measurement temperature.Thermal conductivity decreased with increase of Yb content,and the thermal conductivity of Yb 0.2 Co 4 Sb 12 reached 3.2 W/(m·K) at 600 K.The ZT value of Yb 0.2 Co 4 Sb 12 reached 1.16 at 700 K due to positive contribution from high power factor and low thermal conductivity.  相似文献   

15.
The PbTe intermetallic compound could be fabricated by mechanical alloying of elemental Pb and Te powders for 2 minutes at ball-to-powder weight ratio of 2 : 1. The lattice parameter of PbTe processed by mechanical alloying, 0.6462 nm, was in excellent agreement with the value of 0.6458 nm which was reported for PbTe powder fabricated by melting and grinding. In situ observation of the abrupt temperature rise during the ball milling process indicated that the PbTe intermetallic compound was formed by a self-sustained reaction rather than by diffusional reactions. There was no tendency for PbTe crystalline powders to be amorphized by mechanical alloying.  相似文献   

16.
以Li_2CO_3、Al_2O_3、TiO_2、NH_4H_2PO_4为原料,采用固相烧结法制备锂空气电池固体电解质Li_(1+x)Al_xTi_(2-x)(PO_4)_3(LATP),研究了不同x值、不同烧结温度对电解质性能的影响。通过X射线衍射仪(XRD)、扫描电镜(SEM)和电化学阻抗谱(EIS)对所制备电解质的结构与性能进行表征。结果表明在x值等于0.2时得到纯相的LATP,最佳烧结工艺是350℃保温2 h,600℃保温2 h,1 000℃保温8 h,室温下的电导率为4.89×10~(-5)S/cm。  相似文献   

17.
Sm-filled skutterudites SmxCo4Sb12 (x=0.1, 0.2, 0.5) were synthesized via high pressure and high temperature (HPHT) technique. The temperature dependences of electrical resistivity, Seebeck coefficient and thermal conductivity were measured on these compounds in the range of 300-723 K. All samples showed n-type conduction. The thermal conductivity of SmxCo4Sb12 was significantly depressed as com-pared to unfilled CoSb3. It was believed that Sm atoms "rattled" in the voids of structure and substantially affected the phonon propagation through the lattice. The dimensionless thermoelectric figure of merit, ZT, increased with increasing temperature and reached a maximum value of 0.81 for Sm0.5Co4Sb12 at 723 K.  相似文献   

18.
The heats of formation, referred to the component elements in their stable crystalline forms, of crystalline Se?Te alloys containing 0 to 100 at. pct Te and amorphous alloys containing 0 to 30 at. pct Te were measured by liquid metal solution calorimetry. The heats of formation of the crystalline and amorphous alloys changed nonmonotonically with composition in a parallel manner. The crystalline alloys had negative heats of formation in the range of 0 to approximately 17 at. pct Te; the largest negative value of approximately?0.235 kcal/g-atom occurred at 10 at. pct Te. At 20 at. pct Te the heat of formation was positive and had a value of approximately 0.115 kcal/g-atom and at higher tellurium concentrations it again turned negative but was very small. The heats of formation of all amorphous alloys investigated were positive. A minimum of approximately 0.810 kcal/g-atom at 10 at.pct Te and a maximum of 1.040 kcal/g-atom at 20 at. pct Te corresponded to the largest negative value and the largest positive value of the heat of formation of the crystalline alloys of the respective compositions. The temperatures of maximum rates of crystallization and fusion and the heat effects associated with the crystallization and fusion of the amorphous alloys were measured by differential scanning calorimetry. With increasing tellurium concentration the temperature of crystallization decreased and the heat effect and the temperature associated with fusion increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号