首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究DP1180汽车用双相钢连续冷却转变过程中的相变特性,对不同冷却速率下的DP1180双相钢试样进行了金相检验及显微硬度测试,绘制了该双相钢的连续冷却转变曲线,并分析了DP1180钢在连续冷却过程中的相变规律。结果表明:对于DP1180汽车用双相钢,其连续冷却转变曲线分为铁素体转变区、贝氏体转变区和马氏体转变区。当冷却速率小于0.5℃·s~(-1)时,主要发生铁素体-贝氏体转变;当冷却速率增大到1℃·s~(-1)时,显微组织中出现马氏体;随冷却速率逐渐增大,铁素体不断减少,当冷却速率达到10℃·s~(-1)时,组织变为马氏体+贝氏体;当冷却速率大于40℃·s~(-1)时,组织主要为马氏体。  相似文献   

2.
本文遭过对国产09SICrMrMoRe双相钢冲击断裂行为的研究表明,层片型(层片状马氏体与铁素体相间排列)双相组织的冲击韧性优于岛型(岛状马氏体弥散分布于铁素体中)双相组织。层片型双相组织中裂纹萌生与扩展对两相界面敏感性较小。层片型双相组织的韧化作用主要在于层片状马氏休有效比分隔了铁素体,使裂纹扩展途径曲折,消耗较多的塑性变形功。以层片型双相组织为推础,在马氏体基体上分布少量铁素体,对韧性无害。  相似文献   

3.
马氏体含量对双相钢力学性能的影响   总被引:3,自引:0,他引:3  
在Eshelby等效夹杂的基础上,建立了双相钢在单向应力作用下的自洽模型,通过该模型对双相钢的弹塑性变形进行了数值模拟,拟合的结果与试验数据十分吻合。模型分析表明,对于马氏体,铁素体双相钢,随着马氏体含量的增加,存在着三种不同的破坏形式,其强度受三种不同的因素影响:在马氏含量奶小时,双相钢的强度由铁素体控制;在马氏体含量很高时,双相钢的强度由马氏体控制;马氏体含量中等时,双相钢的强度由马氏体,铁素  相似文献   

4.
采用系列冲击试验研究了控轧控冷技术生产的390MPa级低合金高强钢的低温韧性,并分析了其低温韧性与组织特征的关系。结果表明:该钢具有良好的低温韧性,在-40℃时的冲击功为127J,远大于相关标准的技术要求,按照能量法确定的韧脆转变温度为-56℃;由于该钢晶粒十分细小,裂纹在扩展过程中频繁改变断裂路径,提高了其抵抗解理断裂的能力,从而使其具有良好的低温韧性。  相似文献   

5.
本文对双相钢的断裂特征和精细结构进行了研究。采用反复腐蚀抛光法制样,用扫描电镜观察了双相钢的解理断裂的开裂相和裂纹扩展途径,并得出了双相钢的断裂模式。用双喷射加离子清洗减薄制膜,在透射电镜下观察了马氏体岛和铁素体的精细结构。结果指出:马氏体岛的精细结构与临界间退火温度有关,较低的临界间退火温度,马氏体岛的亚结构以孪晶马氏体为主,不过这种孪晶马氏体的组态在同样含碳量的淬火钢中比较少见。临界间退火温度升高,板条马氏体量增多;在铁素体中有马氏体相变诱发的高密度位错,有时还形成胞状结构。  相似文献   

6.
采用热模拟法进行600~1300℃温度区间P92钢的高温拉伸实验。利用SEM,LSCM对不同拉伸温度下的断口形貌及近断口组织进行分析,并对P92钢的力学性能进行研究。结果表明:P92钢拉伸时,抗拉强度由467.32MPa下降到24.32MPa,屈服强度由56.88MPa下降到1.07MPa;不同拉伸温度下,断口表现以韧性断裂为主,韧性与脆性特征共存的现象。在600~900℃时,P92钢发生了动态回复过程,断口形貌表现为韧窝特征。冷却至室温,P92钢近断口处组织均为马氏体+残余奥氏体组织+M7C3+MC+M23C6+M6C+M3C型碳化物。随着温度升高,P92钢发生了动态再结晶,断口形貌以塑孔为主。P92钢近断口处组织为马氏体+残余奥氏体组织+MC+M6C型碳化物。  相似文献   

7.
目的 提升高强DP980双相钢的力学性能,优化连续退火工艺。方法 对高强汽车双相钢进行了连续退火处理,研究了连续退火均热温度、均热时间、过时效温度对冷轧双相钢显微组织、物相组织和力学性能的影响。结果 对于不同退火均热温度处理的双相钢,其组织均为铁素体(F)+马氏体(M),随着均热温度从715 ℃升高至865 ℃,残余奥氏体体积分数逐渐减小,抗拉强度、屈服强度先增后减,断后伸长率逐渐减小,在均热温度为815 ℃时,双相钢的抗拉强度和屈服强度达到最大值。随着均热时间从0.5 min延长至5 min,双相钢的晶粒尺寸逐渐增大,残余奥氏体体积分数先减后增,抗拉强度、屈服强度先增后减,断后伸长率先减后增,在均热时间为1.5 min时,抗拉强度和屈服强度达到最大值。随着过时效温度从245 ℃上升至395 ℃,双相钢中的马氏体体积分数逐渐减小,当过时效温度为395 ℃时,出现了贝氏体,奥氏体体积分数先增后减,抗拉强度、屈服强度逐渐减小,断后伸长率逐渐增大。结论 冷轧DP980双相钢适宜的连续退火工艺如下:均热温度为815 ℃、均热时间为3 min、过时效温度为295 ℃。此时双相钢具有较好的强塑性。  相似文献   

8.
使用OM、SEM、TEM和XRD等手段观察并表征在不同温度淬火的7Ni钢的组织形貌和逆转奥氏体含量的变化,研究了淬火温度对7Ni钢的低温强度和低温韧性的影响。结果表明:当淬火温度从830℃提高到930℃时钢的低温韧性急剧下降,低温抗拉强度和屈服强度明显降低。同时,随着淬火温度的提高延伸率下降,与低温强度的变化趋势基本一致。在830℃淬火的试验钢,原奥氏体晶粒和马氏体板条束最为细小。而当淬火温度超过830℃时钢中的原奥氏体晶粒和马氏体板条束都显著长大,钢的低温强度和低温韧性随着晶粒尺寸与板条束宽度的增大而下降,粗化的组织对钢的低温强度与低温韧性都有不利的影响。随着淬火温度的提高钢中的逆转奥氏体含量基本上呈下降趋势,在830℃淬火的试验钢中逆转奥氏体含量最高,其低温冲击功也最高。  相似文献   

9.
采用双相区保温-淬火-配分工艺对低碳硅锰钢进行处理,通过场发射扫描电镜、X射线衍射仪和拉伸实验等对该QP钢增塑机制及其组织性能进行研究。结果表明:实验用钢经双相区保温-淬火-配分处理后,综合力学性能优于传统QP钢;双相区合理的保温时间可以减少室温组织中二次淬火马氏体含量,以保证更好的塑性;实验用钢经QP工艺处理后室温残余奥氏体含量为4.9%,而经双相区保温-淬火-配分处理时,随着双相区保温时间的延长,室温残余奥氏体含量呈先增加后减少的趋势,在双相区720℃保温1500s再经QP处理后残余奥氏体含量达到最大值7.3%,综合力学性能最佳。  相似文献   

10.
通过分段淬火连续退火实验,获得两组铁素体晶粒尺寸大致相同、马氏体体积分数不同的双相钢。选取应变速率为10-4s-1进行准静态拉伸实验;选取应变速率为500s-1和2250s-1在分离式霍普金森拉杆技术进行动态拉伸实验。利用动态因子、Feret比率等定量分析方法研究超高强铁素体-马氏体双相钢在动态拉伸变形条件下的组织和性能。结果表明:应变速率效应在双相钢的动态变形行为中主要起强化作用;马氏体体积分数越低的双相钢应变速率敏感性越大;相比抗拉强度而言,超高强冷轧双相钢屈服强度的应变速率敏感性更大。计算在应变速率为2250s-1动态拉伸变形下产生绝热温升分别为98K和89K,并抵消部分应变速率强化作用。  相似文献   

11.
本文在六种不同含碳量的普通碳钢上用亚温淬火获得铁素体加马氏体双相组织,研究了各相的性能和分布对双相钢拉伸强度的影响。试验结果表明:①碳素双相钢的强度与马氏体含量间并不呈简单线性关系;②存在着马氏体对铁素体的相硬化和铁素体对马氏体的相软化,使得两相的显微硬度都随马氏体的含量和马氏体的含碳量的增加而线性上升。文中提出,作为强化相的马氏体对强度的贡献可分为本身承载的直接作用和对铁素体加工硬化的间接作用。双相钢中两相的性能变化和组织形态都促成了混合律不能适用于双相钢。  相似文献   

12.
介绍了热轧双相钢的发展现状及存在问题,指出低成本热轧双相钢、高延伸凸缘型铁素体+贝氏体热轧双相钢(F-B热轧双相钢)及高强度热轧双相钢的开发及应用,将促进我国热轧双相钢的发展,推动汽车工业的"以热代冷"进程。同时,探讨了纳米析出强化型热轧双相钢的强化机理及工艺控制原理,并在实验室进行了中试,开发出铁素体基体析出强化型的热轧双相钢,其抗拉强度达770~830 MPa,屈强比0.75,组织为铁素体+马氏体,且铁素体基体中存在大量细小的纳米级尺寸的TiC过饱和析出和相间析出。  相似文献   

13.
为研究冷却模式对热轧双相钢显微组织及断裂机制的影响,采用两段式(空冷+水冷)、连续式两种冷却方式,得到不同相比例和力学性能的热轧双相钢,轧后取样并在扫描电镜上进行原位拉伸实验.结果表明,两段式冷却模式得到的马氏体呈小岛状,而连续式冷却模式得到的马氏体呈块状,马氏体含量和形貌的不同导致两种冷却方式得到的双相钢力学性能存在差异.原位拉伸过程中,裂纹首先萌生于铁素体与夹杂物界面处,随着变形继续进行,在铁素体与马氏体界面处开始出现裂纹,当变形量进一步增大时,细小岛状马氏体始终不发生断裂,而块状马氏体在颈缩阶段发生断裂.  相似文献   

14.
研究了热轧以相钢Fe-0.078C-1.44Mn-1.11Si-0.38Cr经不同温度回火后的显微组织变化。透射电镜观察表明:热轧双相钢的组织中不可避免地混有少量珠光林(<5%),它们对钢的基本力学性能并没有多大影响。本钢种200℃回火组织中,马氏体基本不变化,为板条态,双相钢仍保持屈服行为;300℃回火组织中,大量马氏体发生分解,形成碳化物,与少量珠光体交界处的马氏体首先发生分解。该温度回火完全  相似文献   

15.
为研究连续退火工艺参数对超高强冷轧双相钢组织及力学性能的影响,在Gleeble-3500热力模拟实验机上,使用正交实验法设计连续退火工艺获得超高强冷轧双相钢.研究发现:连续退火工艺参数对抗拉强度和总延伸率的影响程度依次是:临界区退火温度>保温时间>过时效温度;两阶段应变硬化特性随马氏体体积分数的增加而更加明显:当马氏体体积分数在35%左右时,冷轧双相钢的应变硬化关系明显呈线性;当马氏体体积分数接近50%时,冷轧双相钢的应变硬化关系呈非线性,但两阶段的应变硬化指数n值变化不大,两阶段并由曲线过渡;当马氏体体积分数在65%左右时,冷轧双相钢的应变硬化关系呈非线性,两阶段的应变硬化指数n值变化较大,并出现明显拐点.  相似文献   

16.
针对一种以Al作为主要强化元素的新型马氏体时效不锈钢,通过力学性能测试、光学显微镜观察和透射电子显微分析方法,研究不同的热处理温度对实验钢力学性能和微观组织的影响。结果表明:该实验钢的抗拉强度最高可达1876MPa,屈服强度可达1762MPa,具有良好的强韧性配合。固溶处理后形成了具有高密度位错的细小板条马氏体组织,在时效过程中,马氏体基体上弥散析出的NiAl相使其强度得到大幅度的提升。随着时效温度的提高,NiAl析出相颗粒逐渐长大粗化,从而使强度在到达峰值后迅速下降,出现了过时效现象。实验钢经过820℃固溶+(-70℃)冷处理+540℃时效处理后可获得良好的综合力学性能。  相似文献   

17.
C-Si—Mn冷轧双相钢的应变硬化特性   总被引:2,自引:0,他引:2  
试制了C-Si-Mn冷轧双相钢.采用力学测试、显微组织观察与修正的C-J分析方法研究了双相钢的应变硬化特性.研究结果表明,双相钢的应变硬化具有两阶段.第一阶段应变硬化能力较强,第二阶段硬化能力减弱.两阶段硬化之间存在一个转折应变.当马氏体体积分数小于16%,随马氏体体积分数的增加,两阶段硬化能力均增强.当马氏体体积分数大于16%,随马氏体体积分数的增加,两阶段硬化能力均减弱.硬化转折应变则随马氏体体积分数增加单调递减.铁素体与马氏体的弹塑性行为差异是导致双相钢两阶段硬化的主要原因.马氏体体积分数增加,其强化效果增加,但是由于马氏体中的碳含量降低,其塑性抗力降低.只有当马氏体量增加带来的强化效应大于碳含量减少的弱化效应时,双相钢的应变硬化能力才随之增加.  相似文献   

18.
矿山机械用构件因服役环境恶劣,常常出现磨损失效。低合金耐磨钢制造的构件采用淬火加低温回火得到单一马氏体组织,其硬度较高,但韧性差。目前,采用含有一定Si含量的中锰耐磨钢构件,通过工艺参数的有效控制可以得到马氏体加残余奥氏体(M+RA)复相组织,从而保证矿山机械构件在具有一定硬度的同时还具有一定的塑韧性。利用Gleebel3800热模拟机、金相显微镜(OM)、透射电子显微镜(TEM)、电子背散射衍射(EBSD)技术、X射线衍射(XRD)仪及维氏硬度计等手段,研究了不同冷却速率对中锰马氏体耐磨钢的组织演变、残余奥氏体含量、形貌和维氏硬度的影响。结果表明,冷却速率由30℃/s降低至0. 05℃/s时,试验钢均获得马氏体+残余奥氏体组织。当试验钢以非常缓慢的速率(0. 05℃/s)冷却时,过饱和马氏体中的碳充分配分至残余奥氏体中,增加残余奥氏体的稳定性,因而室温下残余奥氏体体积分数较高(~12%),残余奥氏体呈现膜状和明显的块状形貌。而当冷却速率较快(10℃/s)时,残余奥氏体体积分数低于6%,残余奥氏体呈薄膜状和细小块状。另外,不同冷却速率微观结构演变及残余奥氏体体积分数不同,导致试验钢硬度发生显著变化。冷却速率缓慢时,碳的固溶强化及马氏体位错强化作用减弱,软质相残余奥氏体体积分数增加,使得试验钢硬度降至最低值HV508。当冷却速率大于10℃/s时,过饱和马氏体中碳的固溶强化及其位错亚结构强化作用使得硬度值较高。中锰耐磨钢的维氏硬度y与冷却速率x之间符合双指数衰减关系:y=-42. 23exp(-x/4. 75)-38. 27exp(-x/0. 17)+573. 76。  相似文献   

19.
研究了钢的微观结构,残余奥氏体的稳定性及力学性能随回火温度的变化,结果表明;钢的基体为细晶马氏体,且大部分具有位错亚结构;马氏体板条界上存在着较稳定的残余奥氏体薄膜;马氏体内均匀分布着大量固溶时未溶,5-50nm大小的V4C3;200-300℃回火析出大量细小的ε-碳化物。这种微观结构对于获得高强韧性是理想。Si使ε-碳化物溶解和渗碳体的形成温度提高到300℃以上,故钢在200-300℃回火有良好  相似文献   

20.
本文通过预先热处理获得不同原始组织,研究了残余碳化物形态对GCr15 钢淬火组织与性能的影响。试验结果表明,原始组织中的网状碳化物在两相区淬火加热时,大都残存于奥氏体晶粒之中,其周围基体多为位错型马氏体。若该残余碳化物尺寸较大且形状不规则时,将严重损害钢的强韧性;若碳化物网较为细薄,则对钢的强度与韧性影响不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号