首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
以混合芳胺为固化剂,通过聚氨酯(PU)对4,5-环氧环己烷-1,2-二甲酸二缩水甘油酯(TDE-85)与二酚基丙烷缩水甘油醚(E-51)环氧树脂的混合树脂体系(EP)的改性,制备得到了一种高性能聚氨酯改性环氧树脂(PU/EP)。通过对材料样品结构的红外光谱表征,探讨了PU/EP的固化反应机理。研究结果表明,PU预聚体与1,4-丁二醇(1,4-BDO)及三羟甲基丙烷(TMP)发生了扩链、交联反应得到PU交联聚合物网络,TDE-85/E-51环氧树脂与混合芳胺固化剂反应生成了交联环氧聚合物。EP与PU之间存在的化学接枝、交联反应,提高了EP与PU之间的相容性及共混程度。  相似文献   

2.
以混合芳胺为固化剂,通过聚氨酯(PU)对4,5-环氧环己烷-1,2-二甲酸二缩水甘油酯(TDE-85)与二酚基丙烷缩水甘油醚(E-51)环氧树脂的混合树脂体系(EP)的改性,制备得到了一种高性能聚氨酯改性环氧树脂(PU/EP)。通过对材料样品结构的红外光谱表征,探讨了PU/EP的固化反应机理。研究结果表明,PU预聚体与1,4-丁二醇(1,4-BDO)及三羟甲基丙烷(TMP)发生了扩链、交联反应得到PU交联聚合物网络,TDE-85/E-51环氧树脂与混合芳胺固化剂反应生成了交联环氧聚合物。EP与PU之间存在的化学接枝、交联反应,提高了EP与PU之间的相容性及共混程度。  相似文献   

3.
耐高温聚氨酯改性TDE-85/E-51环氧树脂胶粘剂的制备和性能   总被引:1,自引:0,他引:1  
以混合芳胺为固化剂,通过聚氨酯(PU)对4,5-环氧环己烷-1,2-二甲酸二缩水甘油酯(TDE-85)与二酚基丙烷缩水甘油醚(E-51)环氧树脂的改性,制备了一种高强高韧的耐高温环氧树脂结构胶粘剂。通过改变E-51、TDE-85、PU及固化剂之间的配比,探讨了各个组分对胶粘剂力学性能的影响。通过SEM分析,研究了PU增韧环氧树脂的机理。结果表明,TDE-85和E-51的配比为1∶1,PU添加量为环氧树脂的19%,芳胺固化剂添加量为20%时,胶粘剂具有最佳的耐热性和力学性能。制备的PU改性TDE-85/E-51结构胶粘剂室温拉伸剪切强度达到25.81 MPa,160℃高温拉伸剪切强度为12.85 MPa,剥离强度达到51.68 N/cm。  相似文献   

4.
为了获得一种柔性环氧树脂,选用聚四氢呋喃醚二醇(PTMEG)和二苯基甲烷二异氰酸酯(MDI)制得的热塑性聚氨酯弹性体(TPU)预聚体对E-51型环氧树脂(EP)进行改性,通过拉伸强度、断裂伸长率和弯曲强度等力学性能测试方法得到聚氨酯改性环氧树脂中环氧树脂、TPU预聚体和固化剂的最佳掺配比例。借助红外光谱(FTIR)、差示扫描量热仪(DSC)、热失重(TG)与扫描电镜(SEM)表征聚氨酯改性环氧树脂的微观特性。结果表明:当聚氨酯预聚体改性EP的适宜反应温度为80℃、聚氨酯预聚体的掺量为20%、A和B组分的最优掺配比例为2∶1时,改性体系的力学性能最佳,表干时间为3.5 h,完全干燥时间为9 h,抗拉强度为53.1 MPa,断裂伸长率为153.34%,弯曲强度为48.14 MPa,弯曲变形为13.61 mm,黏结强度为1.89 MPa,T5%和T10%分别为386.4℃、437.2℃,玻璃化转变温度为-27.9℃。通过FTIR与SEM对其改性机理进行分析发现,聚氨酯改性EP达到提高材料韧性的效果,且改性过程属于化学改性范畴。本研究可为合理地选择环...  相似文献   

5.
由端-NCO基聚氨酯预聚物(PU)与环氧树脂(EP)反应制备了聚氨酯接枝改性环氧树脂(EP-g-PU),考察了PU和活性稀释剂含量及异氰酸酯结构对EP-g-PU固化物玻璃化转变温度(Tg)和微观形貌的影响。结果表明,EP-g-PU固化物的Tg随PU含量增加而升高,随活性稀释剂含量增加而降低;三种异氰酸酯制备的EP-g-PU固化物的Tg顺序为IPDIMDITDI。异佛尔酮二异氰酸酯(IPDI)和二苯基甲烷二异氰酸酯(MDI)型EP-g-PU固化物的断面形貌为以EP为细胞核、PU为细胞壁的两相细胞状结构,甲苯二异氰酸酯(TDI)型EP-g-PU固化物的断面形貌为PU以岛状分布于EP基体中的海岛结构,但岛相也是以EP为细胞核、PU为细胞壁的两相细胞状结构。  相似文献   

6.
玻璃纤维填充聚氨酯改性环氧树脂灌封材料的性能   总被引:1,自引:0,他引:1  
采用真空灌注工艺,以磨碎玻璃纤维(MG)为填料,通过聚氨酯(PU)对4,5环氧环己烷1,2-二甲酸二缩水甘油酯(TDE-85)、四氢邻苯二甲酸二缩水甘油酯(711)、二酚基丙烷环氧树脂(E-51)改性,研究了MG/PU/TDE-85灌封材料、MG/PU/711灌封材料及MG/PU/E-51灌封材料的力学性能、热性能和电性能。研究结果表明,MG/PU/TDE-85灌封材料的拉伸强度、冲击强度、玻璃化转变温度、体积电阻率均为最大,分别达到79.72MPa、17.83kJ/m2、144℃和2.78×1015Ω.cm,具有最佳的综合性能。  相似文献   

7.
以4,4’-二苯基甲烷二异氰酸酯和聚醚及双酚A型环氧树脂为原料经共聚合成了聚氨酯(PU)/环氧树脂(EP)互穿聚合物网络(IPNs).通过改变聚氨酯结构及环氧树脂含量制备系列PU/EP的IPNs,并对其性能进行了研究.研究表明随着聚氨酯中两官能度聚醚用量增加,IPNs体系的亲水性增强、表面自由能增大;此外随着环氧树脂含量增多,整个IPNs体系的疏水性增强;力学性能测试表明,聚氨酯结构以及环氧树脂含量对PU/EP的IPNs材料力学性能影响较大.  相似文献   

8.
采用非等温差示扫描量热(DSC)法研究了空心玻璃微珠(HGB)填充环氧树脂/4,4′二氨基二苯基甲烷(EP/DDM)体系的固化反应过程,计算了固化体系的动力学参数,确立了固化工艺条件。结果表明:EP/DDM/HGB体系的表观活化能为51.21kJ·mol~(-1),反应级数为0.91;HGB的加入使固化反应的起始温度提前7~12℃,峰值温度提前4~6℃,并降低了固化体系的反应焓变。  相似文献   

9.
研究了二聚酸二缩水甘油酯及其改性胺环氧固化剂的制备工艺,制得具有增韧作用的环氧树脂固化剂。采用羧酸-环氧氯丙烷(ECH)酯化、闭环二步法合成二聚酸二缩水甘油酯,其最佳合成工艺条件为:催化剂为四丁基溴化铵且用量为二聚酸(DA)质量的2%,酯化反应温度为90℃,DA∶ECH(摩尔比,下同)=1∶10,环化反应温度为55℃,NaOH质量分数为30%,DA∶NaOH=1∶4。将制得的缩水甘油酯与异佛尔酮二胺进行胺化反应得到改性胺固化剂,其与环氧树脂618固化产物的冲击强度为29.6kJ/m~2,体现出优异的增韧效果。  相似文献   

10.
本文通过端异氰酸酯基聚氨酯预聚体与环氧树脂E-51形成了互穿网络,并通过热重分析仪(TGA)研究了完全固化后的互穿网络的热分解行为;透射电镜研究了IPN的相分离行为及用拉伸强度,断裂伸长率对其进行了力学性能的表征.结果表明,经过环氧树脂改性的聚氨酯的耐热性能比纯聚氨酯得到了提高,且力学性能也有所改善.并选取性能较好的PU/EP IPN,用纳米级有机蒙脱土对其进行了改性.研究发现,经有机纳米蒙脱土改性的PU/EP IPN的力学性能及耐热性有了进一步的提高.  相似文献   

11.
采用TDE-85/MeTHPA环氧树脂的聚氨酯(PU)改性,探讨了聚醚二元醇(PPG)分子量大小、聚氨酯预聚体(PUP)加入量等因素对聚氨酯改性TDE-85/MeTHPA树脂体系拉伸强度与冲击强度的影响。研究结果表明,PU改性TDE-85/MeTHPA树脂的力学性能随着PUP加入量的增加先呈上升趋势,达到最大值后又开始下降。合成PUP用的PPG分子量不同时,PU改性TDE-85/MeTHPA树脂的力学性能结果相差比较悬殊,但PU改性TDE-85/MeTHPA树脂的力学性能随PUP加入量的变化趋势是相同的。  相似文献   

12.
本文用脂环族三官能度环氧树脂TDE-85改性双酚A型环氧树脂达到提高耐热性与强韧性的目的。研究了TDE-85含量对树脂基体性能的影响规律,结合动态介电分析法(DDA)确定的固化工艺制备并测试树脂基体性能,实验结果表明,改性环氧树脂体系的力学性能、热性能及冲击强度均有较大幅度的提高,与普通双酚A型树脂相比,相同固化体系作用下拉伸强度、断裂延伸率、弯曲强度及冲击韧性分别提高49.05%、50.0%、36.24%及19.53%;DMA测试结果显示其热稳定性好,Tg提高大于10℃以上,71℃时储能模量E′下降4.5%。并通过红外光谱学进行了分子结构与性能的相关分析。  相似文献   

13.
以酶解木质素(EHL)为原料,采用苯酚-硫酸法对其进行酚化改性,所得酚化木质素(PL)在碱性条件下,与环氧氯丙烷(ECH)合成木质素-环氧树脂(L-EP),利用FT-IR对产物进行表征。探讨单因素反应条件对酚化工艺的影响。结果表明:反应时间3.0h、反应温度95℃、2mol/L H_2SO_4用量为4mL/g时,木质素的酚化效果最佳,其酚羟基含量达到4.632mmol/g,较EHL提高42%。研究了不同L-EP添加量对L-EP/环氧E-51复合材料力学性能和热性能的影响。结果显示:L-EP的添加量为5%时,L-EP/环氧E-51复合材料的拉伸强度最好,较纯E-51提高26%;随着L-EP添加量的增加,L-EP/环氧E-51复合材料的热稳定性增强。采用非等温法分析环氧E-51和L-EP/环氧E-51复合材料的固化动力学,结果证明:L-EP对复合材料固化有一定的促进作用。  相似文献   

14.
复合材料用高模量树脂基体的研究   总被引:7,自引:0,他引:7  
本文介绍以TDE- 85 环氧树脂作为基体,以间苯二胺(MPD) 、间苯二甲胺(A- 50) 作为固化剂,制备高模量树脂基体的方法。  相似文献   

15.
固化剂对聚酰亚胺挠性覆铜板剥离强度的影响   总被引:1,自引:0,他引:1  
采用双氰胺(DICY)、间苯二胺(m-PDA)、长链柔性二胺(DAMI)固化双酚A型环氧树脂(E-51),制备了三种环氧胶粘剂,分别考察了三种固化剂对挠性覆铜板剥离强度的影响。根据差示扫描量热仪(DSC)曲线,通过t-β外推法得到了各固化剂固化环氧胶粘剂的固化工艺。采用扫描电子显微镜(SEM)考察其不同的破坏形式。结果表明,采用双氰胺固化的环氧胶粘剂粘接的挠性覆铜板,剥离后聚酰亚胺薄膜、铜箔表面都留有大量的胶粘剂,此破坏形式属于内聚破坏。同时双氰胺固化的环氧胶粘剂剥离强度最高,粘接强度达到0.74 N/mm,符合日本JPAC行业标准。  相似文献   

16.
分别采用Kamal模型和Kissinger模型研究了E-51/胺基酰亚胺潜伏性固化体系的等温和非等温固化动力学,讨论了该体系的固化反应机理。结果表明,由这两种动力学模型得到的固化动力学参数基本相近,E-51/胺基酰亚胺体系固化反应起始阶段的活化能较高,约为124 kJ/mol~131 kJ/mol。该体系的固化反应包含n级反应和自催化反应。胺基酰亚胺热分解反应是E-51/胺基酰亚胺体系固化反应的控制步骤。  相似文献   

17.
脂肪族三缩水甘油醚改性室温快速固化体系的研究   总被引:1,自引:0,他引:1  
以丙氧基化多元醇为原料,通过端基转化法合成了脂肪族甘油三缩水甘油醚(PGTE),用FT-IR,GPC对其结构进行了表征,化学分析测得其环氧值为0.43。研究了在室温快速固化的E-51/聚硫醇体系中,PGTE的加入对体系固化速度、粘接性能及固化物热稳定性的影响。结果表明,PGTE对该体系具有良好的降粘和提高粘接强度的作用。当PGTE加入量为30(pbw)时,室温快速固化特性和固化物的耐热性基本不变,铁片粘接的剪切强度与不均匀扯离强度则分别提高了116%和126%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号