首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
采用磁场辅助烧结合成法(MASS)制备了化学计量比为La0.67Mg0.33Ni3的储氢合金,通过X射线衍射(XRD)、等温定容法(PCT)和差示扫描量热法(DSC)分析了合金的相结构和吸放氢性能。XRD结果显示:合金主相为PuNi3型结构的(La,Mg)Ni3,氢化后分解为以La2Ni7、MgNi2和LaNi3结构为主的复相产物,合金因吸氢发生晶格膨胀。PCT测试表明:1T磁场下合成的合金在室温下具有最小的滞后系数(0.480)、最大的放氢量1.307(质量分数,%),综合性能最优。该合金放氢DSC曲线上有2个交叠的吸热峰,分别对应于(La,Mg)Ni3和LaNi5氢化后的放氢过程。  相似文献   

2.
Al对La—Mg-Ni系贮氢合金电极电化学性能的影响   总被引:4,自引:0,他引:4  
采用固相扩散法制备La0.7Mg0.3Ni3.5-xAlx(x=0,0.1,0.3,0.7,1.0)和La0.7Mg0.3Ni2.8Co0.7-xAlx(x=0,0.1,0.2,0.3,0.4)贮氧合金,采用X射线衍射、能谱分析及循环伏安等方法分析含金的相结构和电极电化学性能,研究元素Al替代对合金电化学性能的影响.结果表明:合金由LaNi5、La2Ni7和LaNi3三相组成,随着Al替代量的增加,La2Ni7相晶胞逐渐膨胀,LaNi5相大量减少,LaNi3相增加,La2Ni7相有利于合金电化学性能的提高,然而过高的Al含量会对合金的放电性能带来不利影响.La0.7Mg0.3Ni3.4Al0.1和La0.7Mg0.3Ni2.8Co0.6Al0.1合金电极的最大放电容量分别为354.5 mA·h/g和373.1 mA·h/g.循环伏安测试显示较明显的氧化峰和还原峰,且峰电位差较小,反映合金电极较好的吸放氢反应可逆性.  相似文献   

3.
为了提高Mg2Ni基合金的储氢动力学性能,通过熔炼方法分别添加金属元素Nd,Zn和Ti来防止镁的氧化和蒸发,将Mg2Ni基合金在有覆盖剂保护的电阻炉中进行熔炼。借助XRD 和 SEM/EDS研究了铸态合金的相组成和微观组织。采用定容法在Sievert’s型PCT测试仪上测试了合金的氢化动力学性能。Nd、Zn和Ti的添加导致了微量相Mg6Ni和Ni3Ti的生成。Nd和Zn溶解在Mg2Ni基合金的α-Mg、Mg2Ni和MgNi2相中。添加Nd元素后,合金的首次吸氢量高于Mg2Ni的,达到2.86%(质量分数)。Mg2Ni基合金的吸氢动力学性能和活化性能均有所提高。在前3次吸放氢循环过程中,添加Zn和Ti的合金吸氢量和吸氢动力学性能均得到提高。采用Hirooka动力学模型分析了合金的氢化动力学性能及反应机制。  相似文献   

4.
研究了少量Al替代Mg(x=0.1)对La2Mg1-xAlxNi7.5Co1.5贮氢合金电化学循环稳定性的影响.经过充放电循环后,La2Mg1-xAlxNi7.5Co1.5(x=0.0,0.1)合金中的LaNi3相和αLa2Ni7相仍然保持PuNi3型结构和Ce2Ni7型结构,没有发生变化,此外,在这2种合金中出现少量新的物相La(OH)3,Mg(OH)2和Ni.LaNi3相和αLa2Ni7相吸氢形成氢化物后也保持PuNi3型结构和Ce2Ni7型结构.La2MgNi7.5Co1.5吸氢后,LaNi3相和αLa2Ni7相晶胞均呈各向异性膨胀,但LaNi3相的各向异性膨胀程度及晶胞体积膨胀率明显大于αLa2Ni7相.相比La2MgNi7.5Co1.5氢化物,Al替代Mg对La2Mg0.9Al0.1Ni7.5Co1.5氢化物中的αLa2Ni7相吸氢体积膨胀的抑制作用很小,但Al替代Mg使该氢化物中LaNi3相的c轴膨胀率和晶胞体积v的膨胀率均明显降低.电化学吸放氢循环后合金的粒径变化及形貌观察表明,La2Mg0.9A10.1Ni7.5Co1.5合金的抗粉化能力优于La2MgNi7.5Co1.5合金,这是Al替代Mg改善La2MgNi7.5Co1.5合金电极电化学循环稳定性的重要原因.  相似文献   

5.
以La,Mg及Ni金属粉末为原料,通过采用反应球磨法,在0.4 MPa氢气气氛下制备了不同镁含量的LaNi5-x%Mg(x=25,40)(质量分数)复合储氢合金,试图同时实现储氢材料的合成与改性。采用XRD、SEM、TG-DSC对材料的物相、形貌、放氢性能进行分析。通过选用合理的球磨工艺参数,获得了主要组成物相为MgH2、LaH3、Mg2NiH4和单质Ni的复相储氢合金。该系列储氢合金存在两个放氢温区。当镁的质量分数为25%时,样品放氢量为5.02%。  相似文献   

6.
采用X射线衍射、电子探针和电化学测试研究了La0.67Mg0.33Ni3.0-xAlx(x=0.0-0.35)合金的相结构和电化学性能。XRD结果和EPMA观察表明:La0.67Mg0.33Ni3.0合金由LaNi3相和La2Ni7相组成。然而La0.67Mg0.33Ni3.0-xAlx(x=0.1,0.2,0.35)合金不含LaNi3相。研究结果表明Al替代Ni改变了La0.67Mg0.33Ni3.0合金的相结构,Al替代Ni不利于La0.67Mg0.33Ni3.0合金中LaNi3相的形成。此外,随Al含量的增加,La0.67Mg0.33Ni3.0-xAlx(x=0.1,0.2,0.35)合金的相结构也发生了变化。WDS分析表明:随La0.67Mg0.33Ni3.0-xAlx合金中X的增加,Al在LaNis相中的含量增加,但Al在LaNi2相的含量很少并且几乎不随X变化。电化学性能测试表明:Al替代Ni提高了La0.67Mg0.33Ni3.0合金电极的循环稳定性。但La0.67Mg0.33Ni3.0-xAlx合金电极的放电容量却随Al含量的增加而明显降低。  相似文献   

7.
氢化燃烧法合成Mg2Ni的贮氢性能   总被引:2,自引:0,他引:2  
用氢化燃烧法合成了Mg2 Ni,PCT实验结果说明了合成的镁基贮氢合金具有很高的活性和高贮氢量 ,5 5 3K时达到 3.40 %。对Mg Ni系的PCT结果作了处理 ,得出温度和氢平衡压的关系式 :吸氢时lg(p/ 0 .1MPa)=- 34 6 9/T 6 .6 39;放氢时lg(p/ 0 .1MPa) =- 35 5 8/T 6 .6 12。用XRD方法进行了物相分析 ,表明存在在Mg2 Ni的氢化物  相似文献   

8.
采用感应熔炼方法制备了A2B7型La0.75Mg0.25Ni3.5-xAlx(x=0,0.02,0.06 0.1,0.3)四元贮氢合金,系统研究了Al元素部分替代Ni对A2B7型La0.75Mg0.25Ni3.5合金相结构及电化学性能的影响。X射线衍射(XRD)分析表明:La0.75Mg0.25Ni3.5由单一La2Ni7相组成:Al元素加入后,开始出现CaCu5型LaNi5相,当x=0.3时,LaNis相成为合金的主相。Rietveld分析表明:随着Al含量的增加,LaNi5相逐渐增多,Al的加入利于CaCu5型LaNi5相的形成。电化学测试表明:Al替代Ni对A2B7型合金La0.75Mg0.25Ni3.5电极活化性能影响不大:而最大放电容量随Al在La0.75Mg0.25Ni3.5-xAlx,合金中替代量的增加而减小。当放电电流密度为1600mA/g时,合金的倍率放电性能由68.8%(x=0)增加到81.16%(x=0.1)然后减小到65.67%(x=0.3)。此外,La0.75Mg0.25Ni3.5-xAlx合金电极循环稳定性先增加而后下降。x=0.06时合金电极容量保持率最大(S100=85.21.%)。  相似文献   

9.
HCS+MM法制备镁基复合储氢材料结构及储氢性能   总被引:1,自引:0,他引:1  
采用氢化燃烧合成法制备Mg95Ni5-x%TiFe0.8Mn0.2Zr0.05(x=0, 10, 20, 30)(质量分数)复合物,然后将氢化燃烧合成产物进行机械球磨得到镁基复合储氢材料。采用XRD、SEM、EDS及PCT研究材料的相结构、表面形貌、颗粒化学成分以及吸放氢性能。研究表明,添加30% TiFe0.8Mn0.2Zr0.05合金形成的复合物具有最佳的综合吸放氢性能:在373 K,50 s内基本达到饱和吸氢量4.11% (质量分数);在493和523 K,1800 s内放氢量分别为1.91%和4.3%;其起始放氢温度为420 K,与Mg95Ni5相比降低了20 K,吸放氢性能的改善与复合物的组织结构密切相关。此外,TiFe0.8Mn0.2Zr0.05的加入改善了复合物的放氢动力学性能  相似文献   

10.
采用SEM与XRD分析了Mg_(2.1)Ni与Mg_(1.6)La_(0.5)Ni合金的显微组织与相结构,用Sievert法测试了合金的活化性能以及吸放氢动力学。结果表明:Mg_(2.1)Ni合金的室温组织为脊椎状的Mg_2Ni相和层片状Mg_2Ni/Mg共晶组织,而Mg_(1.6)La_(0.5)Ni合金组织为块状La2Mg17相、长条状LaMg_3相镶嵌于Mg_2Ni基体相中;合金的吸氢活化性能与成分有关,Mg_(2.1)Ni合金的活化性能相对较差,而Mg_(1.6)La_(0.5)Ni合金的活化性能优异;合金的吸放氢动力学与La加入有关,Mg_(1.6)La_(0.5)Ni合金的吸放氢动力学优于Mg_(2.1)Ni合金,这归因于La加入使合金组织疏松、较多的晶界/相界、以及具有催化效应的La_4H_(12.19)相出现,但La_4H_(12.19)相具有较高的热稳定性,这降低合金氢化物的放氢率。  相似文献   

11.
研究了Co和Cu取代Ni以及磁热处理对La0.67Mg0.33Ni3-xMx(M=Co,Cu)(x=0,0.5)合金吸放氢反应热力学和动力学性能的影响。结果表明,Ni被Co和Cu元素部分替代后,合金的吸放氢量增大,放氢温度降低,吸放氢特征时间(tc)减小,吸放氢过程中的扩散活化能降低。磁热处理明显地提高了3种铸态合金的吸氢量,增大了吸放氢平台宽度,改善了合金的吸放氢动力学性能,其中磁热处理对La0.67Mg0.33Ni2.5Co0.5合金改性效果最好,吸放氢量分别为1.40%和1.32%(质量分数,下同),放氢峰所对应的温度为77.8℃,吸放氢特征时间"tc"为91.4和379.3s,吸放氢扩散活化能分别为16.3和23.3kJ/mol。  相似文献   

12.
为了改善Mg2Ni型合金的吸放氢动力学性能,用Cu部分替代合金中的Ni。用快淬工艺制备了纳米晶Mg2Ni1-xCux(x=0,0.1,0.2,0.3,0.4)贮氢合金,用XRD、SEM、HRTEM分析了铸态及快淬态合金的微观结构;用自动控制的Sieverts设备测试了合金的吸放氢动力学性能。结果表明,快淬态合金具有纳米晶结构,Cu替代Ni不改变合金的主相Mg2Ni,但导致形成第二相Mg2Cu。随Cu含量的增加,合金的吸氢量先增加而后减小,但合金的放氢量随Cu含量的增加而单调增加。快淬显著提高合金的吸放氢量并改善合金的吸放氢动力学。  相似文献   

13.
The La-Mg-Ni system A2B7-type electrode alloys with nominal composition La0.75-xZrxMg0.25Ni3.2Co0.2Al0.1(x=0,0.05, 0.1,0.15,0.2)were prepared by casting and melt-spinning.The influences of melt spinning on the electrochemical performances as well as the structures of the alloys were investigated.The results obtained by XRD,SEM and TEM show that the as-cast and spun alloys have a multiphase structure,consisting of two main phases(La,Mg)Ni3 and LaNi5 as well as a residual phase LaNi2.The melt spinning leads to an obvious increase of the LaNi5 phase and a decrease of the(La,Mg)Ni3 phase in the alloys.The results of the electrochemical measurement indicate that the discharge capacity of the alloys(x≤0.1)first increases and then decreases with the increase of spinning rate,whereas for x0.1,the discharge capacity of the alloys monotonously falls.The melt spinning slightly impairs the activation capability of the alloys,but it significantly enhances the cycle stability of the alloys.  相似文献   

14.
利用高频熔炼方法制备了La1+xMg2-xNi9(x=0,0.5,1.0,1.5)系列合金,并对其进行了XRD分析和储氢容量及电化学性能测定。结果表明:随着La含量增大,合金中LaNi5和(La,Mg)Ni3相转变为LaNi3相,且Mg2Ni相出现,晶胞体积也增大,合金的储氢容量和电化学性能提高;当x=1.5时,Mg2Ni相消失,合金的储氢性能有所下降。当x=1.0时,即La2MgNi9合金具有较好的储氢容量及电化学容量。  相似文献   

15.
采用感应熔铸+退火处理及快速凝固方法制备了La2Mg0.9Ni7.5Co1.5Al0.1贮氢合金。系统研究了快速凝固对合金的相结构、微观组织及电化学性能的影响。XRD分析表明,随着冷却速率的增加,La2Mg0.9Ni7.5Co1.5Al0.1合金的相组成发生了明显变化。退火合金由αLa2Ni7主相(Ce2Ni7型结构)和少量LaNi3相(PuNi3型结构)组成。随着冷却速率的增加,合金中出现LaNi5相(CaCu5型结构)和LaMgNi4(MgCu4Sn型结构)相,且新相的相丰度增加,aLa2Ni7相和LaNi3相的丰度减少。EPMA分析表明,快速凝固方法制备的La2Mg0.9Ni7.5Co1.5Al0.1贮氢合金为柱状晶组织且晶粒细小。合金电极的电化学测试表明,冷却速率对合金的活化性能影响不大。随冷却速率的增加,合金的最大放电容量减少、高倍率放电性能下降。在较低的冷却速率下(5m/s),合金电极的循环稳定性改善不明显,而随着凝固速度的进一步增加(20m/s),合金电极表现出较好的循环稳定性。  相似文献   

16.
The La-Mg-Ni system PuNi3-type La0.5Ce0.2Mg0.3Co0.4Ni2.6-xMnx (x=0, 0.1, 0.2, 0.3, 0.4) hydrogen storage alloys were prepared by casting and rapid quenching. The effects of the rapid quenching on the structure and electrochemical characteristics of the alloys were studied. The results obtained by XRD, SEM and TEM indicate that the as-cast and quenched alloys mainly consist of two major phases, (La,Mg)Ni3 and LaNi5, as well as a residual phase LaNi. The rapid quenching does not exert an obvious influence on the phase composition of the alloys, but it leads to an increase of the LaNi5 phase and a decrease of the (La, Mg)Ni3 phase. The as-quenched alloys have a nano-crystalline structure, and the grain sizes of the alloys are in the range of 20-30 nm. The results by the electrochemical measurements indicate that both the discharge capacity and the high rate discharge(HRD) ability of the alloy first increase and then decrease with the variety of quenching rate and obtain the maximum values at the special quenching rate which is changeable with the variety of Mn content. The rapid quenching significantly improves the cycle stabilities of the alloys, but it slightly impairs the activation capabilities of the alloys.  相似文献   

17.
In order to improve the electrochemical cycle stability of La-Mg-Ni system (PuNi3-type) hydrogen storage alloy, Ni in the alloys was partially substituted by M (M=Cu, Al, Mn). A new La-Mg-Ni system electrode alloys La0.7Mg0.3Ni2.55-xCo0.45Mx (M=Cu, Al, Mn;x =0,0.1) were prepared by casting and rapid quenching. The effects of element substitution and rapid quenching on the microstructures and electrochemical performances of the alloys were investigated. The results by XRD, SEM and TEM show that the alloys havea multiphase structure, including the (La, Mg)Ni3 phase, the LaNi5 phase and the LaNi2 phase. The rapid quenching and element substitution have an imperceptible influence on the phase compositions of the alloys, but both change the phase abundance of the alloys. The rapid quenching significantly improves the composition homogeneity of the alloys and markedly decreases the grain size of the alloys. The Cu substitution promotes the formation of an amorphous phase in the as-quenched alloy, and a reversal result by the Al substitution. The electrochemical measurement indicates that the element substitution decreases the discharge capacity of the alloys, whereas it obviously improves the cycle stability of the alloys. The positive influence of element substitution on the cycle life of the alloys is in sequence Al>Cu>Mn, and negative influence on the discharge capacity is in sequence Al>Mn>Cu. The rapid quenching significantly enhances the cycle stability of the alloys, but it leads to a different extent decrease of thedischarge capacity of the alloys.  相似文献   

18.
The structure and electrochemical characteristics of La0.7Mg0.3Ni2.875Co0.525Mn0.1-boron composite was studied systematically. The AB3 type hydrogen storage alloys La0.7Mg0.3Ni2.875Co0.525Mn0.1 were successfully synthesized by means of inter-media alloy La2Mg17 . The alloys were composited with boron at different weight rate. From the XRD analyses, each alloy of this series is mainly composed of (La,Mg)Ni3 phase and the LaNi5 phase, and the phase abundance of each phase varies with the boron weight rate, moreover, after composition, the c and cell volumes of (La,Mg)Ni3 phase increase, and the LaNi5 phase keep the same, which indicate that the boron may enter (La,Mg)Ni3 phase. The electrochemical studies show that the maximum discharge capacity of the composites decreases, but the cycling life improved. And the high rate discharge ability and exchange impendence spectroscopy (EIS) of the AB3 alloys and its composite were also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号