首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Microstructure evolution and superplastic behaviors of ZK40 magnesium alloy were investigated in the temperature range of 473~623 K. Transmission electron microscopy (TEM) was used to study the microstructure changes, twinning occurred significantly after being processed by equal channel angular pressing (ECAP) for one pass through the die, the mean grain size was 5.6μm. Finer grains can be obtained after further processing through ECAP, the average grain size of the alloy processed by ECAP for three passes was as low as 0.8 μ_m; this alloy exhibited low temperature superplasticity at 473~523 K, elongations obtained at the same initial strain rate of 1×10~(-3) s~(-1) were 260% at 473 K and 612% at 523 K, respectively. Corresponding values for the ZK40 alloy processed by ECAP for only one pass were 124% at 473 K and 212% at 523 K, respectively; poor superplastic behavior of this material was related to the long-range stresses associated with the non-equilibrium grain boundaries within the coarse grains. The incompatibility between fine and coarse grains was thought to be unfavorable to the improvement of superplasticity.  相似文献   

2.
《Acta Materialia》2007,55(3):1083-1091
The microstructures and properties of a two-phase Mg–8% Li alloy were evaluated in three different conditions: after casting; after casting followed by extrusion at different temperatures and speeds; and after casting, extrusion and processing by ECAP for four passes at room temperature using a die with a channel angle of 135°. The results show extrusion introduces significant grain refinement and there is additional refinement in ECAP. In tensile testing, the elongations to failure increase with decreasing extrusion temperature, but are essentially independent of the extrusion speed. The ductilities are low in the cast condition, intermediate in the extruded condition and high after extrusion and ECAP. For the last condition, an exceptionally high elongation of ∼1780% was achieved at a testing temperature of 473 K. It is shown that it is advantageous to use a die with a channel angle of 135° because it permits pressing at room temperature where grain growth is limited.  相似文献   

3.
Equal-channel angular pressing (ECAP) is a useful tool for achieving exceptional grain refinement in bulk metallic alloys. Typically, the grain sizes produced through ECAP are in the submicrometer range, and thus they are smaller by up to an order of magnitude than the grain sizes attained through typical thermomechanical treatments. As a consequence of these ultrafine grains, the as-pressed alloys may exhibit superplastic ductilities at faster strain rates than in conventional superplastic alloys. This work initially describes the application of ECAP to two different alloys. First, results are presented for a commercial Al-2024 alloy where this alloy was selected because it contains no minor additions of either zirconium or scandium to assist in restricting grain growth. The results show that superplasticity is achieved through the use of ECAP. Second, results are described for a Mg-0.6%Zr alloy where this alloy was selected because it is the optimum composition for achieving a high damping capacity. Again, processing by ECAP produces superplastic ductilities not attained in the cast alloy. The second part of this work demonstrates that processing by ECAP may be extended from conventional rod or bar samples to samples in the form of plates. This is a very attractive feature for industrial superplastic forming applications. This paper was presented at the International Symposium on Superplasticity and Superplastic Forming, sponsored by the Manufacturing Critical Sector at the ASM International AeroMat 2004 Conference and Exposition, June 8–9, 2004, in Seattle, WA. The symposium was organized by Daniel G. Sanders, The Boeing Company.  相似文献   

4.
Equal channel angular pressing(ECAP) was conducted at 250℃for 4 passes to the as-extruded Mg-3%Cu-1%Mn alloy with high strength and high damping capacity.After ECAP processing,the grain of as-extruded alloy is significantly refined to about 4μm,both yield strength and tensile strength of the as-extruded Mg-Cu-Mn alloy are decreased,but the ductility is improved.After the ECAP processing,the damping capacity of Mg-Cu-Mn alloy is decreased at room temperature,while is substantially increased at elevated te...  相似文献   

5.
采用等通道转角挤压(ECAP)工艺以Bc路径在623K温度下对Mg-1.5Mn-0.3Ce镁合金进行变形,观察显微组织与织构,测试了力学性能。显微组织分析表明,镁合金经ECAP变形晶粒尺寸明显得到细化,经6道次ECAP变形后晶粒尺寸由原轧制态的约26.1μm细化至约1.2μm,且细小的第二相粒子Mg12Ce弥散分布于晶内及晶界处;同时经ECAP变形后,原始轧制织构随变形道次的增加不断减小,并开始转变为ECAP织构,织构强度不断增强;力学性能结果表明,由于晶粒细化作用大于织构软化作用,前3道次ECAP变形镁合金强度随道次的增加不断提高,与Hall?Petch关系相符,在第3道次时其抗拉强度和屈服强度达到最大值,分别为272.2和263.7MPa;在4道次之后形成较强的非基面织构,镁合金强度下降,与Hall?Petch呈相悖关系。断口分析表明,轧制态与ECAP变形镁合金的断裂方式都是沿晶断裂,由于6道次变形镁合金晶粒细化,存在更多的韧窝并获得16.8%最大室温伸长率。  相似文献   

6.
《Acta Materialia》2001,49(18):3829-3838
Experiments were conducted to determine the influence of magnesium additions on grain refinement and tensile ductility in an Al–0.2% Sc alloy processed by equal-channel angular pressing (ECAP). The experiments show ECAP reduces the average grain size to within the range of ∼0.70 to ∼0.20 μm for alloys containing from 0 to 3% Mg but the as-pressed grain size increases to ∼0.3 μm in an alloy with 5% Mg because it is then necessary to use additional annealing treatments during the pressing process. The ultrafine grains introduced by ECAP are stable to high temperatures in the alloys containing from 0 to 3% Mg: in all alloys, the average grain size is <5 μm after annealing for 1 h at temperatures up to ∼750 K. High superplastic ductilities were achieved in the alloy containing 3% Mg but alloys containing 0.5% and 1% Mg exhibited the enhanced ductilities generally associated with conventional Al–Mg alloys. The results suggest the addition of ∼3% Mg is optimum for achieving superplastic elongations at rapid strain rates in the Al–0.2% Sc alloy.  相似文献   

7.
本文通过两种不同冷却速度制备成分相同、铸造组织特征不同的Mg-4.4Zn-0.3Zr-0.4Y铸态合金,研究不同铸造组织特征对挤压变形态合金组织和力学性能的影响。研究结果表明:与空冷铸造合金相比较,通过水冷冷却增大了熔体冷却速度,使铸态组织得到细化,抑制了W-相(Mg3Y2Zn3相)的形核,并促进了I-相(Mg3YZn6相)的生成,获得了更大体积分数的准晶相(I-相)。经过挤压变形后,水冷铸造合金中的再结晶晶粒细小均匀,经过挤压变形破碎的细小I-相颗粒弥散分布在基体上,{0002}基面织构得到弱化,而{101 ?2}织构强度增强,从而使挤压态Mg-4.4Zn-0.3Zr-0.4Y合金的强度和塑性都得到了大幅的提高。水冷铸造Mg-4.4Zn-0.3Zr-0.4Y合金经过挤压变形后,屈服强度和抗拉强度分别达到297.0MPa和327.3MPa,与空冷铸造挤压态合金相比分别提高了46.4MPa和21.4MPa。水冷铸造Mg-4.4Zn-0.3Zr-0.4Y挤压态合金的延伸率达到14.8%,与空冷铸造挤压态合金相比增大了4.7%。  相似文献   

8.
采用等通道转角挤压(ECAP)Bc路径对固溶态Mg-3.52Sn-3.32Al合金分别挤压1、4和8道次。利用光学显微镜、扫描电子显微镜、透射电子显微镜和X射线衍射仪分析合金的组织和相组成,并测试了其室温拉伸力学性能。结果表明,经ECAP挤压后,固溶态合金组织中析出大量细小的Mg2Sn相和极少量的Mg17Al12相。随挤压道次增加,合金的综合力学性能先提高后降低。经4道次挤压后,合金的综合拉伸力学性能相对较佳,抗拉强度、伸长率和硬度分别达到250 MPa、20.5%和61.3 HV9.8,较未ECAP时分别提高43.7%、105%和26.9%。经ECAP挤压的合金室温拉伸断口均呈韧性断裂。等通道转角挤压Mg-3.52Sn-3.32Al合金的力学性能受晶粒尺寸、析出相以及组织织构的共同影响。  相似文献   

9.
An aluminum 7034 alloy, produced by spray casting and with an initial grain size of ˜2.1 μm, was processed by equal-channel angular pressing (ECAP) at 473 K to produce an ultrafine grain size of ˜0.3 μm. It is shown that the rod-like MgZn2 precipitates present in the as-received alloy are broken into very small spherical particles during ECAP and these particles become distributed reasonably uniformly throughout the material. The presence of these fine MgZn2 particles, combined with a distribution of fine Al3Zr precipitates, is very effective in restricting grain growth so that submicrometer grains are retained at elevated temperatures up to at least ˜670 K. Tensile testing of the pressed material revealed high elongations to failure, including elongations of >1000% when testing at a temperature of 673 K at initial strain rates at and above 10−2 s−1. These results confirm the occurrence of high strain rate superplasticity in the spray-cast alloy.  相似文献   

10.
利用XRD、OM、SEM、TEM研究了喷射沉积Mg-12.55Al-3.33Zn-0.58Ca-1.0Nd合金挤压态的显微组织和合金的力学性能。结果表明:喷射沉积挤压态镁合金主要包含基体α-Mg和Al2Ca相,基体组织为等轴晶,平均晶粒尺寸为3μm;Al2Ca颗粒主要沿镁基体晶界分布,颗粒尺寸在1.0μm左右,并在Al2Ca相中存在孪晶结构;合金的σb、σ0.2、δ分别为450、325MPa,5%。在拉伸断口上存在大量石块状的Al2Ca相,表明合金的断裂方式为沿晶断裂;与经热挤压的铸造AZ91镁合金对比,该合金强度明显提高,但合金塑性降低;合金强度的提高主要来源于合金的细晶强化和Al、Zn对合金的固溶强化,而伸长率降低是由于合金中存在的大量Al2Ca颗粒是沿镁基体晶界分布,导致合金的塑性降低。  相似文献   

11.
《Acta Materialia》2004,52(9):2497-2507
Billets of pure aluminum and an Al–1%Mg–0.2%Sc alloy were successfully processed using equal-channel angular pressing (ECAP) with a die having an internal channel angle of 60°. Careful inspection of the microstructures after ECAP revealed excellent agreement, at both the macroscopic and the microscopic levels, with the theoretical predictions for shearing using a 60° die. The grain sizes introduced with the 60° die were slightly smaller than with a conventional 90° die; thus, the values with these two dies were ∼1.1 and ∼1.2 μm in pure Al and ∼0.30 and ∼0.36 μm in the Al–Mg–Sc alloy, respectively. Tensile testing of the pure aluminum at room temperature revealed similar strengthening after processing using either a 60° or a 90° die. In tests conducted at 673 K, the Al–Mg–Sc alloy processed with the 60° die exhibited significantly higher elongations to failure due primarily to the larger strain imposed with this die. It is shown using orientation imaging microscopy that superplastic flow in the Al–Mg–Sc alloy produces an essentially random texture and a distribution of boundary misorientations that approximates to the theoretical distribution for an array of randomly oriented grains.  相似文献   

12.
In this work, the Mg–5Al–2Ca alloy was extruded at 573, 623 and 673 K, with a ratio of 16:1 and a constant speed of 3 mm/s. Results demonstrate that the Al2Ca particle is formed in Mg–5Al–2Ca alloy. The size, amount and distribution of Al2Ca particles are influenced evidently by extrusion temperature. Unlike previous reports, the intensity of basal texture increases with increasing extrusion temperature, and the reasons are analyzed and given. Even though the average grain size increases as the extrusion temperature increased from 573 to 623 K, the YS, UTS and elongation of asextruded Mg–5Al–2Ca alloy are almost kept the same at 573 and 623 K. The reason is speculated as the balance of grain size, Al2Ca phase and texture at the two temperatures. The work hardening rate depends on extrusion temperature, and the largest θ value of Mg–5Al–2Ca alloy is obtained when the extrusion was performed at 623 K.  相似文献   

13.
采用单辊熔体旋转法制备Al-10.7Zn-2.4Mg-0.9Cu合金带材,利用热挤压将带材坯料制成棒材,对其微观组织和力学性能进行研究。结果表明:所制备的带材由过饱和固溶体α(Al)等轴细晶构成,晶粒尺寸为3~5μm;合金经挤压后存在粗大第二相,析出相主要为MgZn2相,挤压态棒材抗拉强度为499.8 MPa,伸长率达到了15.3%,断口呈韧性断裂特征;经T6热处理后,合金中有细小的沉淀相析出,使得室温力学性能得到提高,抗拉强度达到631.9 MPa,伸长率有所降低,断口呈韧脆混合断裂特征。  相似文献   

14.
等通道转角挤压制备超细晶Mg15Al双相合金组织与性能   总被引:1,自引:1,他引:0  
对高铝双相合金Mg15Al在553K以Bc路线进行了不同道次的等通道挤压(ECAP),获得了超细晶高铝镁合金。通过OM,SEM,TEM分析了ECAP前后合金的微观组织结构及断口形貌,并测试了不同挤压道次后合金的硬度和室温拉伸性能,分析了ECAP细化晶粒机理及其性能改善原因。结果表明,随挤压道次增加,累计形变增强,网状硬脆相β-Mg17Al12破碎,合金晶粒显著细化,但对单相区和两相混合区细化效果不同。在α、β两相共存区内,4道次ECAP后形成100nm~200nm的细晶粒;在α单相区,4道次ECAP后晶粒为1μm以下,且在初晶α-Mg内析出弥散细小的β相,起到细晶强化和弥散强化作用。8道次ECAP后,晶粒略有长大。ECAP使合金的硬度、抗拉强度和延伸率同时得到提高,尤其是4道次ECAP后,硬度提高了32.04%,抗拉强度σb从150MPa提高到269.3MPa,延伸率δ由0.05%提高到7.4%;8道次ECAP后,硬度、抗拉强度略有下降,延伸率略有上升。SEM断口观察显示ECAP使合金拉伸断口形貌由铸态的解理断裂特征转变为延性韧窝断裂特征。  相似文献   

15.
Influence of equal channel angular extrusion on room temperature mechanical properties of cast Mg–9Al–Zn alloy was investigated. The results show that room temperature mechanical properties of Mg–9Al–Zn alloy, such as yield strength, ultimate tensile strength and elongation, can be improved heavily by equal channel angular extrusion. Processing routes, processing temperature and extrusion passes have important influence on room temperature mechanical properties of processed Mg–9Al–Zn alloy by equal channel angular extrusion. The optimum room temperature mechanical properties such as yield strength of 209 MPa, ultimate tensile strength of 339 MPa and elongation of 14.1%, can be obtained when Mg–9Al–Zn alloy was processed by equal channel angular extrusion for 6 passes at route BC at 498 K. Large bulk materials of Mg–9Al–Zn alloy with average grain size of 4 μm and high mechanical properties can be prepared.  相似文献   

16.
采用熔铸、大变形轧制(加工率大于92%)和硝酸盐浴退火方法制备Mg-7.83%Li 合金与Mg-8.42%Li合金细晶板材,研究合金的超塑性、显微组织、空洞与断裂形貌和变形机制.计算α相(5.7%Li)和β相(11%Li)的扩散系数和Gibbs自由能,讨论573 K时超塑性晶粒长大的原因.结果表明:Mg-7.83Li和Mg-8.42Li合金分别获得850%和920%的最大超塑性;Mg-7.83Li合金在573 K时发生了显著的超塑性晶粒长大;在573 K和1.67×10~(-3) s~(-1)条件下制备的Mg-8.42Li合金中的空洞较少,且在变形区中随机而孤立地分布.断裂形貌观察发现Mg-8.42Li合金在573 K和5×10~(-4) s~(-1)条件下发生穿晶断裂;Mg-7.83Li合金在573 K和1.67×10~(-3) s~(-1)条件下发生沿晶界韧窝断裂.归一化实验数据与考虑位错数量的变形机制图对比表明合金超塑性变形机制为晶格扩散控制的位错调节的晶界滑移.  相似文献   

17.
The microstructure and mechanical properties of Mg-xSn(x=3,7 and 14,mass fraction,%) alloys extruded indirectly at 300℃ were investigated by means of optical microscopy,scanning electron microscopy and tensile test.The grain size of theα-Mg matrix decreases from 220,160 and 93μm after the homogenization treatment to 28,3 and 16μm in the three alloys after extrusion,respectively.The results show that the grain refinement is most remarkable in the as-extruded Mg-7Sn alloy.At the same time,the amount of the Mg2Sn particles remarkably increases in the Mg-7Sn alloy with very uniform distribution in theα-Mg matrix.In contrast,the Mg2Sn phase inherited from the solidification with a large size is mainly distributed along grain boundary in the Mg-14Sn alloy.The tensile tests at room temperature show that the ultimate tensile strength of the as-extruded Mg-7Sn alloy is the highest,i.e.,255 MPa,increased by 120%as compared with that of as-cast samples.  相似文献   

18.
The solution-treated Mg-4Y-4Sm-0.5Zr alloy was extruded at temperatures from 325℃ to 500℃.Dynamic recrystallization(DRX) completely occurs when the alloy is extruded at 350℃and above.The grains of the extruded alloy are obviously refined by the occurrence of DRX.The average grain size of the extruded alloy increases with increasing the extrusion temperature,leading to a slight decrease of the ultimate tensile strength(UTS) and the yield strength(YS) .On the contrary,the UTS and YS of the extruded and aged alloy increase with increasing the extrusion temperature.Values of UTS of 400 MPa,YS larger than 300 MPa and elongation(EL) of 7%are achieved after extrusion at 400℃ and ageing at 200℃ for 16 h.Both grain refinement and precipitation are efficient strengthening mechanisms for the Mg-4Y-4Sm-0.5Zr alloy.  相似文献   

19.
A new Mg-2.2 wt% Zn alloy containing 1.8 wt% Ca and 0.5 wt% Mn has been developed and subjected to extrusion under different extrusion parameters.The finest(~0.48 μm) recrystallized grain structures,containing both nano-sized MgZn_2 precipitates and α-Mn nanoparticles,were obtained in the alloy extruded at 270℃/0.01 mm s~(-1).In this alloy,the deformed coarse-grain region possessed a much stronger texture intensity(~32.49 mud) relative to the recrystallized fine-grain region(~13.99 mud).A positive work hardening rate in the third stage of work hardening curve was also evident in the alloy extruded at 270℃,which was related to the sharp basal texture and which provided insufficient active slip systems.The high work hardening rate in the fourth stage contributed to the high ductility extruded at 270℃/1 mm s~(-1).This alloy exhibited a weak texture,and the examination of fracture surface revealed highly dimpled surfaces.The optimum tensile strength was achieved in the alloy extruded at 270℃/0.01 mm s~(-1),and the yield strength,ultimate tensile strength and elongation to failure were~364.1 MPa,~394.5 MPa and~7.2%,respectively.Fine grain strengthening from the recrystallized fine-grain region played the greatest role in the strength increment of this alloy compared with Orowan strengthening and dislocation strengthening in the deformed coarse-grain regions.  相似文献   

20.
Microstructure evolution and superplastic behaviors of ZK40 magnesium alloy were investigated in the temperature range of 473–623 K. Transmission electron microscopy (TEM) was used to study the microstructure changes. After the alloy had been processed by equal channel angular pressing (ECAP) for one pass through the die, significant twinning was found to have occurred, and the mean grain size was 5.6 μm. Finer grains were obtained after multi-pass ECAP, and the average grain size of the alloy ECAPed for three passes was as low as 0.8 μm; this alloy exhibited low temperature superplasticity at 473–523 K, and the elongations obtained at the initial strain rate of 1×10−3 s−1 were 260% at 473 K and 612% at 523 K. Corresponding values for the ZK40 alloy processed by ECAP for only one pass were 124% at 473 K and 212% at 523 K. Poor superplastic behavior of the ZK40 alloy processed by ECAP for only one pass was related to the longrange stresses associated with the non-equilibrium grain boundaries within the coarse grains. The incompatibility between the fine grains and the coarse grains was thought to be unfavorable to the improvement of superplascity. This article is based on a presentation in “The 7th Korea-China Workshop on Advanced Materials” organized by the Korea-China Advanced Materials Cooperation Center and the China-Korea Advanced Materials Cooperation Center, held at Ramada Plaza Jeju Hotel, Jeju Island, Korea on August 24–27, 2003.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号