首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 103 毫秒
1.
Pulmonary fibrosis is a chronic and fatal lung disease that significantly impacts the aging population globally. To date, anti-fibrotic, immunosuppressive, and other adjunct therapy demonstrate limited efficacies. Advancing our understanding of the pathogenic mechanisms of lung fibrosis will provide a future path for the cure. Cellular senescence has gained substantial interest in recent decades due to the increased incidence of fibroproliferative lung diseases in the older age group. Furthermore, the pathologic state of cellular senescence that includes maladaptive tissue repair, decreased regeneration, and chronic inflammation resembles key features of progressive lung fibrosis. This review describes regulatory pathways of cellular senescence and discusses the current knowledge on the senescence of critical cellular players of lung fibrosis, including epithelial cells (alveolar type 2 cells, basal cells, etc.), fibroblasts, and immune cells, their phenotypic changes, and the cellular and molecular mechanisms by which these cells contribute to the pathogenesis of pulmonary fibrosis. A few challenges in the field include establishing appropriate in vivo experimental models and identifying senescence-targeted signaling molecules and specific therapies to target senescent cells, known collectively as “senolytic” or “senotherapeutic” agents.  相似文献   

2.
The mechanisms underlying the pathogenesis of idiopathic pulmonary fibrosis (IPF) involve multiple pathways, such as inflammation, epithelial mesenchymal transition, coagulation, oxidative stress, and developmental processes. The small GTPase, RhoA, and its target protein, Rho-kinase (ROCK), may interact with other signaling pathways known to contribute to pulmonary fibrosis. This study aimed to determine the beneficial effects and mechanisms of fasudil, a selective ROCK inhibitor, on bleomycin-induced pulmonary fibrosis in mice. Our results showed that the Aschcroft score and hydroxyproline content of the bleomycin-treated mouse lung decreased in response to fasudil treatment. The number of infiltrated inflammatory cells in the bronchoalveolar lavage fluid (BALF) was attenuated by fasudil. In addition, fasudil reduced the production of transforming growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF), alpha-smooth muscle actin (α-SMA), and plasminogen activator inhibitor-1 (PAI-1) mRNA and protein expression in bleomycin-induced pulmonary fibrosis. These findings suggest that fasudil may be a potential therapeutic candidate for the treatment of pulmonary fibrosis.  相似文献   

3.
Idiopathic pulmonary fibrosis (IPF) is a progressing lethal disease with few clinically effective therapies. Corilagin is a tannin derivative which shows anti-inflammatory and antifibrotics properties and is potentiated in treating IPF. Here, we investigated the effect of corilagin on lung injury following bleomycin exposure in an animal model of pulmonary fibrosis. Corilagin abrogated bleomycin-induced lung fibrosis as assessed by H&E; Masson’s trichrome staining and lung hydroxyproline content in lung tissue. Corilagin reduced the number of apoptotic lung cells and prevented lung epithelial cells from membrane breakdown, effluence of lamellar bodies and thickening of the respiratory membrane. Bleomycin exposure induced expression of MDA, IKKα, phosphorylated IKKα (p-IKKα), NF-κB P65, TNF-α and IL-1β, and reduced I-κB expression in mice lung tissue or in BALF. These changes were reversed by high-dose corilagin (100 mg/kg i.p) more dramatically than by low dose (10 mg/kg i.p). Last, corilagin inhibits TGF-β1 production and α-SMA expression in lung tissue samples. Taken together, these findings confirmed that corilagin attenuates bleomycin-induced epithelial injury and fibrosis via inactivation of oxidative stress, proinflammatory cytokine release and NF-κB and TGF-β1 signaling. Corilagin may serve as a promising therapeutic agent for pulmonary fibrosis.  相似文献   

4.
5.
Interstitial lung diseases (ILDs) that are known as diffuse parenchymal lung diseases (DPLDs) lead to the damage of alveolar epithelium and lung parenchyma, culminating in inflammation and widespread fibrosis. ILDs that account for more than 200 different pathologies can be divided into two groups: ILDs that have a known cause and those where the cause is unknown, classified as idiopathic interstitial pneumonia (IIP). IIPs include idiopathic pulmonary fibrosis (IPF), non-specific interstitial pneumonia (NSIP), cryptogenic organizing pneumonia (COP) known also as bronchiolitis obliterans organizing pneumonia (BOOP), acute interstitial pneumonia (AIP), desquamative interstitial pneumonia (DIP), respiratory bronchiolitis-associated interstitial lung disease (RB-ILD), and lymphocytic interstitial pneumonia (LIP). In this review, our aim is to describe the pathogenic mechanisms that lead to the onset and progression of the different IIPs, starting from IPF as the most studied, in order to find both the common and standalone molecular and cellular key players among them. Finally, a deeper molecular and cellular characterization of different interstitial lung diseases without a known cause would contribute to giving a more accurate diagnosis to the patients, which would translate to a more effective treatment decision.  相似文献   

6.
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease. During the past decade, novel pathogenic mechanisms of IPF have been elucidated that have shifted the concept of IPF from an inflammatory-driven to an epithelial-driven disease. Dysregulated repair responses induced by recurrent epithelial cell damage and excessive extracellular matrix accumulation result in pulmonary fibrosis. Although there is currently no curative therapy for IPF, two medications, pirfenidone and nintedanib, have been introduced based on understanding the pathogenesis of the disease. In this review, we discuss advances in understanding IPF pathogenesis, highlighting epithelial–mesenchymal transition (EMT), the ubiquitin-proteasome system, and endothelial cells. TGF-β is a central regulator involved in EMT and pulmonary fibrosis. HECT-, RING finger-, and U-box-type E3 ubiquitin ligases regulate TGF-β-Smad pathway-mediated EMT via the ubiquitin-proteasome pathway. p27 degradation mediated by the SCF-type E3 ligase, Skp2, contributes to the progression of pulmonary fibrosis by promotion of either mesenchymal fibroblast proliferation, EMT, or both. In addition to fibroblasts as key effector cells in myofibroblast differentiation and extracellular matrix deposition, endothelial cells also play a role in the processes of IPF. Endothelial cells can transform into myofibroblasts; therefore, endothelial–mesenchymal transition can be another source of myofibroblasts.  相似文献   

7.
8.
Idiopathic pulmonary fibrosis (IPF) is characterized by fibrotic change in alveolar epithelial cells and leads to the irreversible deterioration of pulmonary function. Transforming growth factor-beta 1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) in type 2 lung epithelial cells contributes to excessive collagen deposition and plays an important role in IPF. Atractylodin (ATL) is a kind of herbal medicine that has been proven to protect intestinal inflammation and attenuate acute lung injury. Our study aimed to determine whether EMT played a crucial role in the pathogenesis of pulmonary fibrosis and whether EMT can be utilized as a therapeutic target by ATL treatment to mitigate IPF. To address this topic, we took two steps to investigate: 1. Utilization of anin vitro EMT model by treating alveolar epithelial cells (A549 cells) with TGF-β1 followed by ATL treatment for elucidating the underlying pathways, including Smad2/3 hyperphosphorylation, mitogen-activated protein kinase (MAPK) pathway overexpression, Snail and Slug upregulation, and loss of E-cadherin. Utilization of an in vivo lung injury model by treating bleomycin on mice followed by ATL treatment to demonstrate the therapeutic effectiveness, such as, less collagen deposition and lower E-cadherin expression. In conclusion, ATL attenuates TGF-β1-induced EMT in A549 cells and bleomycin-induced pulmonary fibrosis in mice.  相似文献   

9.
10.
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease with an unmet need of biomarkers that can aid in the diagnostic and prognostic assessment of the disease and response to treatment. In this two-part explorative proteomic study, we demonstrate how proteins associated with tissue remodeling, inflammation and chemotaxis such as MMP7, CXCL13 and CCL19 are released in response to aberrant extracellular matrix (ECM) in IPF lung. We used a novel ex vivo model where decellularized lung tissue from IPF patients and healthy donors were repopulated with healthy fibroblasts to monitor locally released mediators. Results were validated in longitudinally collected serum samples from 38 IPF patients and from 77 healthy controls. We demonstrate how proteins elevated in the ex vivo model (e.g., MMP7), and other serum proteins found elevated in IPF patients such as HGF, VEGFA, MCP-3, IL-6 and TNFRSF12A, are associated with disease severity and progression and their response to antifibrotic treatment. Our study supports the model’s applicability in studying mechanisms involved in IPF and provides additional evidence for both established and potentially new biomarkers in IPF.  相似文献   

11.
Lysophosphatidic acid (LPA), a naturally occurring glycerophospholipid, can evoke various biological responses, including cell migration, proliferation and survival, via activation of G protein-coupled receptors (GPCRs). However, the role of LPA receptors and details of LPA signaling in migration are largely unexplored. In this study we detect the expression of LPA1 and LPA3 receptors in rat aortic smooth muscle cells (RASMCs). LPA stimulated RASMCs migration in a dose-dependent manner and induced the phosphorylation of p38 mitogen-activated protein kinase (p38MAPK) and extracellular signal-regulated kinase (ERK). LPA-induced cell migration was significantly inhibited by specific LPA1/LPA3-receptor antagonist Dioctylglycerol pyrophosphate (8:0) (DGPP8.0) at higher concentration. Migration of cells toward LPA was partially, but significantly, reduced in the presence of SB-203580, a p38 MAPK inhibitor, but not PD98059, an ERK inhibitor. In addition, pertussis toxin (PTX), a Gi protein inhibitor, induced an inhibitory effect on p38 MAPK, ERK phosphorylation and RASMCs migration. These data suggest that LPA-induced migration is mediated through the Gi-protein-coupled LPA1 receptor involving activation of a PTX-sensitive Gi / p38MAPK pathway.  相似文献   

12.
The tyrosine kinase activity of epidermal growth factor receptors (EGFRs) plays critical roles in cell proliferation, regeneration, tumorigenesis, and anticancer resistance. Non-small-cell lung cancer patients who responded to EGFR-tyrosine kinase inhibitors (EGFR-TKIs) and obtained survival benefits had somatic EGFR mutations. EGFR-TKI-related adverse events (AEs) are usually tolerable and manageable, although serious AEs, including lung injury (specifically, interstitial lung disease (ILD), causing 58% of EGFR-TKI treatment-related deaths), occur infrequently. The etiopathogenesis of EGFR-TKI-induced ILD remains unknown. Risk factors, such as tobacco exposure, pre-existing lung fibrosis, chronic obstructive pulmonary disease, and poor performance status, indicate that lung inflammatory circumstances may worsen with EGFR-TKI treatment because of impaired epithelial healing of lung injuries. There is limited evidence from preclinical and clinical studies of the mechanisms underlying EGFR-TKI-induced ILD in the available literature. Herein, we evaluated the relationship between EGFR-TKIs and AEs, especially ILD. Recent reports on mechanisms inducing lung injury or resistance in cytokine-rich circumstances were reviewed. We discussed the relevance of cytotoxic agents or immunotherapeutic agents in combination with EGFR-TKIs as a potential mechanism of EGFR-TKI-related lung injury and reviewed recent developments in diagnostics and therapeutics that facilitate recovery from lung injury or overcoming resistance to anti-EGFR treatment.  相似文献   

13.
Transforming growth factor-β1 (TGF-β1)-induced myofibroblast transdifferentiation from orbital fibroblasts is known to dominate tissue remodeling and fibrosis in Graves’ ophthalmopathy (GO). However, the signaling pathways through which TGF-β1 activates Graves’ orbital fibroblasts remain unclear. This study investigated the role of the mitogen-activated protein kinase (MAPK) pathway in TGF-β1-induced myofibroblast transdifferentiation in human Graves’ orbital fibroblasts. The MAPK pathway was assessed by measuring the phosphorylation of p38, c-Jun N-terminal kinase (JNK), and extracellular-signal-regulated kinase (ERK) by Western blots. The expression of connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), and fibronectin representing fibrogenesis was estimated. The activities of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) responsible for extracellular matrix (ECM) metabolism were analyzed. Specific pharmacologic kinase inhibitors were used to confirm the involvement of the MAPK pathway. After treatment with TGF-β1, the phosphorylation levels of p38 and JNK, but not ERK, were increased. CTGF, α-SMA, and fibronectin, as well as TIMP-1 and TIMP-3, were upregulated, whereas the activities of MMP-2/-9 were inhibited. The effects of TGF-β1 on the expression of these factors were eliminated by p38 and JNK inhibitors. The results suggested that TGF-β1 could induce myofibroblast transdifferentiation in human Graves’ orbital fibroblasts through the p38 and JNK pathways.  相似文献   

14.
目的探讨霉酚酸酯(mycophenolate mofetil,MMF)对博莱霉素(bleomycin,BLM)诱导的小鼠肺纤维化组织中转化生长因子-β1(transforming growth factor-β1,TGF-β1)表达的影响。方法将C57BL/6小鼠随机分为6组:正常对照组、MMF对照组、BLM模型组、MMF低(20 mg/kg)、中(60 mg/kg)、高(100 mg/kg)剂量干预组,每组6只。BLM模型组和MMF 3个干预组经气管注入BLM(6 mg/kg),正常对照组和MMF对照组注入等量无菌生理盐水;次日按MMF对照组和MMF干预低、中、高剂量组小鼠体重计算MMF给药量,灌胃小鼠,每日1次,连续14 d,正常对照组和BLM模型组用等体积的双蒸水灌胃。灌胃第16天采集小鼠肺脏标本,经HE、Masson染色,从组织形态学上观察肺组织纤维化情况并进行Aschcroft评分;RT-PCR法检测小鼠肺组织中TGF-β1基因mRNA的转录水平;Western blot法检测小鼠肺组织中TGF-β1蛋白的表达水平。结果 BLM诱导的小鼠肺纤维化改变显著,Ashcroft评分较正常对照组显著增高(P<0.01),表明小鼠肺纤维化模型构建成功;MMF高剂量干预组肺组织损伤减轻,炎细胞浸润及胶原沉积减少,Ashcroft评分显著降低(P=0.000)。MMF高剂量干预组与BLM模型组比较,TGF-β1基因mRNA的转录水平及蛋白的表达水平均明显减低(P<0.05);而MMF低、中剂量干预组与BLM模型组之间、MMF对照组与正常对照组之间,差异均无统计学意义(P>0.05)。结论高剂量的MMF(100 mg/kg)可抑制BLM诱导的肺纤维化小鼠肺组织中TGF-β1基因mRNA的转录水平及蛋白表达水平,有望成为治疗肺纤维化的理想药物。  相似文献   

15.
The lungs play a very important role in the human respiratory system. However, many factors can destroy the structure of the lung, causing several lung diseases and, often, serious damage to people’s health. Nerve growth factor (NGF) is a polypeptide which is widely expressed in lung tissues. Under different microenvironments, NGF participates in the occurrence and development of lung diseases by changing protein expression levels and mediating cell function. In this review, we summarize the functions of NGF as well as some potential underlying mechanisms in pulmonary fibrosis (PF), coronavirus disease 2019 (COVID-19), pulmonary hypertension (PH), asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. Furthermore, we highlight that anti-NGF may be used in future therapeutic strategies.  相似文献   

16.
Neuropathological lesions in Alzheimer’s disease (AD) include amyloid plaques formed by the accumulation of amyloid peptides, neurofibrillary tangles made of hyperphosphorylated tau protein, synaptic and neuronal degenerations, and neuroinflammation. The cause of AD is unknown, but according to the amyloid hypothesis, amyloid oligomers could lead to the activation of kinases such as eukaryotic translation initiation factor 2-alpha kinase 2 (PKR), p38, and receptor-interacting serine/threonine-protein kinase 1 (RIPK1), which all belong to the same stress-activated pathway. Many toxic kinase activations have been described in AD patients and in experimental models. A p38 mitogen-activated protein kinase inhibitor was recently tested in clinical trials but with unsuccessful results. The complex PKR/P38/RIPK1 (PKR/dual specificity mitogen-activated protein kinase kinase 6 (MKK6)/P38/MAP kinase-activated protein kinase 2 (MK2)/RIPK1) is highly activated in AD brains and in the brains of AD transgenic animals. To delineate the implication of this pathway in AD, we carried out a search on PubMed including PKR/MKK6/p38/MK2/RIPK1, Alzheimer, and therapeutics. The involvement of this signaling pathway in the genesis of AD lesions, including Aβ accumulations and tau phosphorylation as well as cognitive decline, is demonstrated by the reports described in this review. A future combination strategy with kinase inhibitors should be envisaged to modulate the consequences for neurons and other brain cells linked to the abnormal activation of this pathway.  相似文献   

17.
It has been documented in in vitro studies that zinc oxide nanoparticles (ZnO NPs) are capable of inducing oxidative stress, which plays a crucial role in ZnO NP-mediated apoptosis. However, the underlying molecular mechanism of apoptosis in neurocytes induced by ZnO NP exposure was not fully elucidated. In this study, we investigated the potential mechanisms of apoptosis provoked by ZnO NPs in cultured primary astrocytes by exploring the molecular signaling pathways triggered after ZnO NP exposure. ZnO NP exposure was found to reduce cell viability in MTT assays, increase lactate dehydrogenase (LDH) release, stimulate intracellular reactive oxygen species (ROS) generation, and elicit caspase-3 activation in a dose- and time-dependent manner. Apoptosis occurred after ZnO NP exposure as evidenced by nuclear condensation and poly(ADP-ribose) polymerase-1 (PARP) cleavage. A decrease in mitochondrial membrane potential (MMP) with a concomitant increase in the expression of Bax/Bcl-2 ratio suggested that the mitochondria also mediated the pathway involved in ZnO NP-induced apoptosis. In addition, exposure of the cultured cells to ZnO NPs led to phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-related kinase (ERK), and p38 mitogen-activated protein kinase (p38 MAPK). Moreover, JNK inhibitor (SP600125) significantly reduced ZnO NP-induced cleaved PARP and cleaved caspase-3 expression, but not ERK inhibitor (U0126) or p38 MAPK inhibitor (SB203580), indicating that JNK signaling pathway is involved in ZnO NP-induced apoptosis in primary astrocytes.  相似文献   

18.
Fibrosing interstitial lung diseases (ILDs) are chronic and ultimately fatal age-related lung diseases characterized by the progressive and irreversible accumulation of scar tissue in the lung parenchyma. Over the past years, significant progress has been made in our incomplete understanding of the pathobiology underlying fibrosing ILDs, in particular in relation to diverse age-related processes and cell perturbations that seem to lead to maladaptation to stress and susceptibility to lung fibrosis. Growing evidence suggests that a specific biological phenomenon known as cellular senescence plays an important role in the initiation and progression of pulmonary fibrosis. Cellular senescence is defined as a cell fate decision caused by the accumulation of unrepairable cellular damage and is characterized by an abundant pro-inflammatory and pro-fibrotic secretome. The senescence response has been widely recognized as a beneficial physiological mechanism during development and in tumour suppression. However, recent evidence strengthens the idea that it also drives degenerative processes such as lung fibrosis, most likely by promoting molecular and cellular changes in chronic fibrosing processes. Here, we review how cellular senescence may contribute to lung fibrosis pathobiology, and we highlight current and emerging therapeutic approaches to treat fibrosing ILDs by targeting cellular senescence.  相似文献   

19.
The Wnt signalling pathway is a central communication cascade between cells to orchestrate polarity and fate during development and adult tissue homeostasis in various organisms. This pathway can be regulated by different signalling molecules in several steps. One of the coordinators in this pathway is Nemo-like kinase (NLK), which is an atypical proline-directed serine/threonine mitogen-activated protein (MAP) kinase. Very recently, NLK was established as an essential regulator in different cellular processes and abnormal NLK expression was highlighted to affect the development and progression of various diseases. In this review, we focused on the recent discoveries by using NLK-deficient mice, which show a phenotype in the development and function of organs such as the lung, heart and skeleton. Furthermore, NLK could conduct the function and differentiation of cells from the immune system, in addition to regulating neurodegenerative diseases, such as Huntington’s disease and spinocerebellar ataxias. Overall, generations of NLK-deficient mice have taught us valuable lessons about the role of this kinase in certain diseases and development.  相似文献   

20.
Idiopathic pulmonary fibrosis (IPF) is a chronic devastating disease with poor prognosis. Multiple pathological processes, including inflammation, epithelial mesenchymal transition (EMT), apoptosis, and oxidative stress, are involved in the pathogenesis of IPF. Recent findings suggested that nuclear factor-κB (NF-κB) is constitutively activated in IPF and acts as a central regulator in the pathogenesis of IPF. The aim of our study was to reveal the value of andrographolide on bleomycin-induced inflammation and fibrosis in mice. The indicated dosages of andrographolide were administered in mice with bleomycin-induced pulmonary fibrosis. On day 21, cell counts of total cells, macrophages, neutrophils and lymphocytes, alone with TNF-α in bronchoalveolar lavage fluid (BALF) were measured. HE staining and Masson’s trichrome (MT) staining were used to observe the histological alterations of lungs. The Ashcroft score and hydroxyproline content of lungs were also measured. TGF-β1 and α-SMA mRNA and protein were analyzed. Activation of NF-κB was determined by western blotting and electrophoretic mobility shift assay (EMSA). On day 21 after bleomycin stimulation, andrographolide dose-dependently inhibited the inflammatory cells and TNF-α in BALF. Meanwhile, our data demonstrated that the Ashcroft score and hydroxyproline content of the bleomycin-stimulated lung were reduced by andrographolide administration. Furthermore, andrographloide suppressed TGF-β1 and α-SMA mRNA and protein expression in bleomycin-induced pulmonary fibrosis. Meanwhile, andrographolide significantly dose-dependently inhibited the ratio of phospho-NF-κB p65/total NF-κB p65 and NF-κB p65 DNA binding activities. Our findings indicate that andrographolide compromised bleomycin-induced pulmonary inflammation and fibrosis possibly through inactivation of NF-κB. Andrographolide holds promise as a novel drug to treat the devastating disease of pulmonary fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号