首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
汽轮机运行转速通常存在波动,叶片材料特性也存在不确定性。为评估调节级叶片强度可靠度,假设汽轮机转速、叶片材料弹性模量及密度服从正态分布,建立三维有限元接触模型,自编程序完成了调节级叶片多个样本的静态应力分析,然后应用多项式响应面法拟合以及Monte Carlo模拟方法得到了叶片可靠度。建立的叶片强度可靠性分析方法具有计算效率和精度高的优点,分析结果对保证叶片安全性具有重要参考意义。  相似文献   

2.
复杂连接结构的汽轮机长叶片静态应力分析   总被引:2,自引:2,他引:0  
李辛毅  安宁 《汽轮机技术》1996,38(3):156-159,174
利用空间扭曲梁模型,对带有复杂连接结构的汽轮机长叶片进行有限元离散,分析记叙 静态应力分布规律。  相似文献   

3.
黄俊 《风能》2014,(2):112-115
本文借助通用有限元计算结构软件,建立东海大桥海上风电场单机容量为3.6MW机组基础的三维有限元模型,计算得到极限风荷载作用下混凝土承台的应力和裂缝分布情况,并对承台应力和裂缝计算结果进行分析,为基础承台配筋提供建议。  相似文献   

4.
采用Solidworks软件对国产某600MW汽轮机低压转子进行三维实体建模,针对汽轮机长叶片提出了一种叶片模化方法。基于Algor有限元软件对该型机组低压转子进行了模态分析,将临界转速计算结果与传统的圆盘法所得结果以及设计数据进行比较,比较结果表明:提出的叶片模化方法是可行的,运用该方法处理的叶片模型在理论上更接近实际叶片。研究结果为透平机转子的设计及其动力学有限元三维实体建模提供了一定的参考。  相似文献   

5.
近年来汽轮机朝着大功率、高参数方向快速发展,汽轮机进口蒸汽温度不断提高,导致叶片的工作环境进一步恶化.叶片作为汽轮机的核心部件,其安全性直接影响汽轮机机组的运行状况,因此研究高温条件下叶片的强度和蠕变特性非常重要.以某大功率汽轮机高温叶片为例,构造了叶片和叶轮三维有限元模型,采用商用有限元软件ANSYS分析了离心力和温度场共同作用下的叶片热弹性应力及变形;然后,应用诺顿模型分析了该叶片经历100 000 h蠕变历程的应力和应变.建立了完整的汽轮机叶片蠕变特性分析数值模型,研究工作为汽轮机叶片的静强度和蠕变特性研究提供了具体的方法,所得结论对于高温叶片设计具有指导意义.  相似文献   

6.
基于径向基函数神经网络的汽轮机转子等效应力计算模型   总被引:1,自引:0,他引:1  
为解决汽轮机转子应力的在线监测问题,建立了基于径向基函数(RBF)神经网络的汽轮机转子等效应力计算模型,对比了用有限元和RBF神经网络模型两种方法计算得出的冷态、温态、热态和极热态4种启动工况下转子调节级叶轮根部圆角处的等效应力.计算结果表明:RBF神经网络模型计算结果与有限元法解的结果非常相近,且计算简便、耗时少,可以应用于汽轮机转子等效应力的在线计算,为汽轮机转子寿命在线管理提供依据.  相似文献   

7.
整圈阻尼叶片的有限元分析方法研究——稳态应力计算   总被引:1,自引:0,他引:1  
整圈阻尼叶片是汽轮机动叶片中较为先进的一种长叶片结构形式,其结构强度较高,但是对其进行精细化设计和分析具有一定难度。目前在应用FEA软件对汽轮机整圈自锁阻尼叶片进行结构分析时,仍然存在一些有待澄清的问题,计算结果的准确性也需要进一步的确认。本文承接上篇关于整圈阻尼长叶片频率计算的有限元方法,着重对叶片的应力分析过程中涉及的前处理以及求解过程中的参数设置进行了探讨,希望能够对叶片设计工程师的工作提供参考。  相似文献   

8.
设计3组化容补水泵模型,运用Pro/E建立三维模型,由CFD软件仿真,并对水力模型进行试验,对比试验与仿真结果,获取最优模型。通过ANSYS Workbench建立CFD与Static Structural(静力学)和Modal(模态)连接,对最优模型进行分析,以泵三维定常数值计算结果为基础,利用顺序耦合技术,对固体和流体域进行迭代,分析叶轮的静态应力和振型。结果表明,在水压力作用下叶片变形最大位移发生在叶片出水边靠近叶片边缘处,由平衡孔作用,叶片的等效应力相对均匀较小,叶轮轮毂处因叶轮前后面压差作用,等效应力较大。设计工况下,叶轮轮毂变形对振型的影响明显。  相似文献   

9.
赵科  姜鑫  宋力  姜焱  田瑞 《可再生能源》2019,(8):1260-1264
文章应用Pulse16.1结构振动分析系统测试了两种叶片的振型与频率,并与数值模拟结果进行了对比。对比结果说明了叶片有限元模型的准确性及文中的数值计算结果适用于叶片实体。通过CFD仿真和ACP铺层,对相同翼型、相同尺寸且重量相差不超过4%的三维机织与四轴向复合材料叶片在额定工况下的结构特性进行了有限元分析。分别从铺层工艺、应力应变幅值及位移响应等方面对两种叶片进行了对比。结果表明:新型的三维正交机织复合材料叶片铺层工艺简单,树脂更易浸透;应力曲线平滑不会发生应力集中现象,且具有更优越的耐应力性。通过对两种叶片不同方向的位移响应分析,发现三维正交机织复合材料叶片的这种耐应力性源于织物结构中的Z纱捆绑。  相似文献   

10.
大型风力发电机复合材料叶片的强度、刚度和抵抗屈曲等结构力学特性对风机的性能及寿命有重要的影响。文章结合MATLAB和ANSYS有限元建模方法,建立了含有铺层信息的复合材料叶片三维有限元模型,对5MW风力发电机叶片进行了静态结构力学特性分析;定义了两种极端运行工况,分析和计算了极端工况载荷作用下的叶尖位移及力学特性,得到了应力最大的关键区域及屈曲特征。将仿真分析结果与FAST软件计算结果进行对比,验证了该方法的有效性,为进一步地分析和铺层厚度优化提供了可行的方法和参考依据。  相似文献   

11.
Woody biomass in Finland and Sweden comprises mainly four wood species: spruce, pine, birch and aspen. To study the ash, which may cause problems for the combustion device, one tree of each species were cut down and prepared for comparisons with fuel samples. Well-defined samples of wood, bark and foliage were analyzed on 11 ash-forming elements: Si, Al, Fe, Ca, Mg, Mn, Na, K, P, S and Cl. The ash content in the wood tissues (0.2–0.7%) was low compared to the ash content in the bark tissues (1.9–6.4%) and the foliage (2.4–7.7%). The woods’ content of ash-forming elements was consequently low; the highest contents were of Ca (410–1340 ppm) and K (200–1310), followed by Mg (70–290), Mn (15–240) and P (0–350). Present in the wood was also Si (50–190), S (50–200) and Cl (30–110). The bark tissues showed much higher element contents; Ca (4800–19,100 ppm) and K (1600–6400) were the dominating elements, followed by Mg (210–2400), P (210–1200), Mn (110–1100) and S (310–750), but the Cl contents (40–330) were only moderately higher in the bark than in the wood. The young foliage (shoots and deciduous leaves) had the highest K (7100–25,000 ppm), P (1600–5300) and S (1100–2600) contents of all tissues, while the shoots of spruce had the highest Cl contents (820–1360) and its needles the highest Si content (5000–11,300). This paper presented a new approach in fuel characterization: the method excludes the presence of impurities, and focus on different categories of plant tissues. This made it possible to discuss the contents of ash element in a wide spectrum of fuel-types, which are of large importance for the energy production in Finland and Sweden.  相似文献   

12.
正1 ABSTRACT To reduce the effect of global warming on our climate,the levels of CO2emissions should be reduced.One way to do this is to increase the efficiency of electricity production from fossil fuels.This will in turn reduce the amount of CO2emissions for a given power output.Using US practice for efficiency calculations,then a move from a typical US plant running at 37%efficiency to a 760℃/38.5 MPa(1 400/5 580 psi)plant running at 48%efficiency would reduce CO2emissions by 170kg/MW.hr or 25%.  相似文献   

13.
Performance assessment of some ice TES systems   总被引:1,自引:0,他引:1  
In this paper, a performance assessment of four main types of ice storage techniques for space cooling purposes, namely ice slurry systems, ice-on-coil systems (both internal and external melt), and encapsulated ice systems is conducted. A detailed analysis, coupled with a case study based on the literature data, follows. The ice making techniques are compared on the basis of energy and exergy performance criteria including charging, discharging and storage efficiencies, which make up the ice storage and retrieval process. Losses due to heat leakage and irreversibilities from entropy generation are included. A vapor-compression refrigeration cycle with R134a as the working fluid provides the cooling load, while the analysis is performed in both a full storage and partial storage process, with comparisons between these two. In the case of full storage, the energy efficiencies associated with the charging and discharging processes are well over 98% in all cases, while the exergy efficiencies ranged from 46% to 76% for the charging cycle and 18% to 24% for the discharging cycle. For the partial storage systems, all energy and exergy efficiencies were slightly less than that for full storage, due to the increasing effect wall heat leakage has on the decreased storage volume and load. The results show that energy analyses alone do not provide much useful insight into system behavior, since the vast majority of losses in all processes are a result of entropy generation which results from system irreversibilities.  相似文献   

14.
The purpose of this paper is to illustrate the advantages of the direct surface-curvature distribution blade-design method, originally proposed by Korakianitis, for the leading-edge design of turbine blades, and by extension for other types of airfoil shapes. The leading edge shape is critical in the blade design process, and it is quite difficult to completely control with inverse, semi-inverse or other direct-design methods. The blade-design method is briefly reviewed, and then the effort is concentrated on smoothly blending the leading edge shape (circle or ellipse, etc.) with the main part of the blade surface, in a manner that avoids leading-edge flow-disturbance and flow-separation regions. Specifically in the leading edge region we return to the second-order (parabolic) construction line coupled with a revised smoothing equation between the leading-edge shape and the main part of the blade. The Hodson–Dominy blade has been used as an example to show the ability of this blade-design method to remove leading-edge separation bubbles in gas turbine blades and other airfoil shapes that have very sharp changes in curvature near the leading edge. An additional gas turbine blade example has been used to illustrate the ability of this method to design leading edge shapes that avoid leading-edge separation bubbles at off-design conditions. This gas turbine blade example has inlet flow angle 0°, outlet flow angle −64.3°, and tangential lift coefficient 1.045, in a region of parameters where the leading edge shape is critical for the overall blade performance. Computed results at incidences of −10°,   −5°,   +5°,   +10° are used to illustrate the complete removal of leading edge flow-disturbance regions, thus minimizing the possibility of leading-edge separation bubbles, while concurrently minimizing the stagnation pressure drop from inlet to outlet. These results using two difficult example cases of leading edge geometries illustrate the superiority and utility of this blade-design method when compared with other direct or inverse blade-design methods.  相似文献   

15.
Chlamydomonas reinhardtii cc124 and Azotobacter chroococcum bacteria were co-cultured with a series of volume ratios and under a variety of light densities to determine the optimal culture conditions and to investigate the mechanism by which co-cultivation improves H2 yield. The results demonstrated that the optimal culture conditions for the highest H2 production of the combined system were a 1:40 vol ratio of bacterial cultures to algal cultures under 200 μE m?2 s?1. Under these conditions, the maximal H2 yield was 255 μmol mg?1 Chl, which was approximately 15.9-fold of the control. The reasons for the improvement in H2 yield included decreased O2 content, enhanced algal growth, and increased H2ase activity and starch content of the combined system.  相似文献   

16.
Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NOx) emissions, while producing lower emissions of carbon dioxide (CO2), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NOx emissions. High NOx emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas-hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NOx and CO2 emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is insufficient penetration and distribution of the pilot fuel in the charge, resulting in a lack of ignition centers. EGR admission at low and intermediate loads increases combustion temperatures, lowering unburned HC and CO emissions. Larger pilot fuel quantities at these load levels and hydrogen gas addition can also help increase combustion efficiency. Power output is lower at certain conditions than diesel-fueled engines, for reasons similar to those affecting power output of SI engines. In both cases the power output can be maintained with direct injection. Overall, natural gas can be used in both engine types; however further refinement and optimization of engines and fuel-injection systems is needed.  相似文献   

17.
A chemical reactor for the steam-gasification of carbonaceous particles (e.g. coal, coke) is considered for using concentrated solar radiation as the energy source of high-temperature process heat. A two-phase reactor model that couples radiative, convective, and conductive heat transfer to the chemical kinetics is applied to optimize the reactor geometrical configuration and operational parameters (feedstock's initial particle size, feeding rates, and solar power input) for maximum reaction extent and solar-to-chemical energy conversion efficiency of a 5 kW prototype reactor and its scale-up to 300 kW. For the 300 kW reactor, complete reaction extent is predicted for an initial feedstock particle size up to 35 μm at residence times of less than 10 s and peak temperatures of 1818 K, yielding high-quality syngas with a calorific content that has been solar-upgraded by 19% over that of the petcoke gasified.  相似文献   

18.
The physical aspects of the activation energy, in higher and high temperatures, of the metal creep process were examined. The research results of creep-rupture in a uniaxial stress state and the criterion of creep-rupture in biaxial stress states, at two temperatures, are then presented. For these studies creep-rupture, taking case iron as an example the energy and pseudoenergy activation was determined. For complex stress states the criterion of creep-rupture was taken to be Sdobyrev's, i.e. σred = σ1 β + (1 − β)σi, where: σ1-maximal principal stress, σi-stress intensity, β-material constant (at variable temperature β = β(T)). The methods of assessment of the material ageing grade are given in percentages of ageing of new material in the following mechanical properties: 1) creep strength in uniaxial stress state, 2) activation energy in uniaxial stress state, 3) criterion creep strength in complex stress states, 4) activation pseudoenergy in complex stress states. The methods 1) and 3) are the relatively simplest because they result from experimental investigations only at nominal temperature of the structure work, however, for methods 2) and 4) it is necessary to perform the experimental investigations at least at two temperatures.  相似文献   

19.
Hydrogen was produced from primary sewage biosolids via mesophilic anaerobic fermentation in a continuously fed bioreactor. Prior to fermentation the sewage biosolids were heated to 70 °C for 1 h to inactivate methanogens and during fermentation a cellulose degrading enzyme was added to improve substrate availability. Hydraulic retention times (HRT) of 18, 24, 36 and 48 h were evaluated for the duration of hydrogen production. Without sparging a hydraulic retention time of 24 h resulted in the longest period of hydrogen production (3 days), during which a hydrogen yield of 21.9 L H2 kg−1 VS added to the bioreactor was achieved. Methods of preventing the decline of hydrogen production during continuous fermentation were evaluated. Of the techniques evaluated using nitrogen gas to sparge the bioreactor contents proved to be more effective than flushing just the headspace of the bioreactor. Sparging at 0.06 L L min−1 successfully prevented a decline in hydrogen production and resulted in a yield of 27.0  L H2 kg−1 VS added, over a period of greater than 12 days or 12 HRT. The use of sparging also delayed the build up of acetic acid in the bioreactor, suggesting that it serves to inhibit homoacetogenesis and thus maintain hydrogen production.  相似文献   

20.
汽轮机数字电液调节系统挂闸异常的技术完善   总被引:1,自引:0,他引:1  
分析了200MW汽轮机数字电液调节系统在运行中存在的挂闸异常问题,采取了相应的技术处理措施,且运行实践效果良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号