首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 562 毫秒
1.
为获得黄秋葵干燥工艺条件,选取不同干燥方式、干燥温度对黄秋葵进行干燥,研究不同干燥工艺条件对干燥特性、动力学和品质的影响。结果表明:热风干燥速率受干基含水率的影响大,远红外干燥速率受干基含水率的影响小。Midilli 模型能准确描述黄秋葵热风和远红外干燥过程。在相同温度下,热风干燥的有效水分扩散系数比远红外干燥的大0.52~1.10 倍,热风干燥所需活化能比远红外干燥所需活化能低5 481.76 J/mol。干制品的VC 降解、复水比和硬度受温度和时间累积效应的影响。以干燥特性、动力学和干制品品质为指标,基于主成分分析获得黄秋葵干燥条件,热风温度70 ℃,干燥时间为300min,有效水分扩散系数为1.36×10-9m2/s,所得干制品VC 含量7.71mg/100g、复水比6.03、硬度3.25 N。  相似文献   

2.
为探究豇豆热风干燥中的水分变化规律,在不同热风温度、热风风速和铺料层数的条件下对豇豆进行试验,使用传统数学模型对试验数据进行数学建模得到最佳动力学模型;在单因素实验基础上进行响应面试验,以豇豆复水比、色差值和单位能耗作为评价指标,采用熵权法确定权重对工艺参数进行综合优化。结果表明:热风温度与铺料层数对豇豆热风干燥速率及干燥总时长的影响较大,热风风速对干燥速率和干燥总时长的影响较小;Avhad and Marchetti模型为最优预测模型,能较准确地预测豇豆热风干燥过程中的含水率变化;基于熵权法求得最佳工艺参数为:热风温度51°C、热风风速1.2 m/s、铺料层数3层,此工艺条件下验证试验单位能耗为34.52 kJ/kg,色差值为23.87,复水比为1.49。该研究为提高豇豆干燥的品质和干燥设备的设计提供了可靠理论数据。  相似文献   

3.
《食品与发酵工业》2014,(11):165-170
以猕猴桃片为原料,采用热风法对猕猴桃进行薄层干燥试验。通过对不同热风温度的探讨获得了猕猴桃片在热风干燥条件下温度和水分变化的基本规律。结果表明:猕猴桃片热风干燥失水速率前期比后期要快,干燥过程中没有恒速干燥阶段,只存在降速干燥;热风干燥下(温度100℃时)猕猴桃的有效水分扩散系数和干燥活化能分别是10.421×10-8m2/s和26.60 k J/mol;同时建立的猕猴桃片薄层干燥数学模型方程为MR=exp[-(0.097 62-0.002 888 t+0.000 021 23 t2)t(0.201 8-0.054 8 t-0.000 298 9 t2)],模型符合Page方程MR=exp(-ktn),且模型预测值和试验值具有很好的拟合度。  相似文献   

4.
为研究番木瓜片采用热风微波耦合干燥的干燥特性和最优工艺组合,选用自制热风微波耦合干燥系统进行实验,得出热风微波耦合干燥曲线、干燥速率曲线及最优工艺组合,并建立干燥模型。结果表明:番木瓜片热风微波耦合干燥速率经历一个短暂的加速期后较长时间处于降速期;番木瓜片热风微波耦合干燥综合效果最优的组合为:热风温度60℃、微波功率密度5.5 W/g、热风风速0.5 m/s,其中微波功率密度对干燥综合效果的影响起主导作用;番木瓜片热风微波耦合干燥动力学模型可用Page方程描述,即M_R=exp(-0.0011T-0.0069P_D+0.073t(~(0.0015T2-0.1993T+7.9642));番木瓜片热风微波耦合干燥有效水分扩散系数介于2.533×10~(-9)~6.0792×10~(-9)m~2/s之间,且有效水分扩散模型为:10~(-10)D_(eff)=0.507T+6.72P_D+10.1v-32。  相似文献   

5.
胡萝卜薄层干燥动力学模型研究   总被引:3,自引:0,他引:3  
为探索胡萝卜热风干燥过程中水分的变化规律,本研究以胡萝卜为干燥对象,进行薄层干燥特性及模型研究,探讨不同温度、风速及物料厚度条件下胡萝卜水分比与干燥时间的关系,建立动力学模型;以Fick扩散定律为依据,确定胡萝卜一维传热传质的有效水分扩散系数并建立其数学模型。结果表明:胡萝卜薄层干燥动力学模型可用Page方程来描述,并通过回归分析确定方程系数m、k,通过多元线性回归方法得到有效水分扩散系数(Deff)与温度、风速和厚度的表达式,实验得到的Deff值在0.84×10-9~6.69×10-9 m2/s范围内随着干燥温度、风速和物料厚度的升高而增大。  相似文献   

6.
红薯叶粉热泵-热风联合干燥工艺优化   总被引:5,自引:0,他引:5  
为保证红薯叶粉品质,降低加工能耗,采用热泵-热风联合干燥技术对红薯叶进行处理,在单因素试验基础上运用Box-Behnken Design优化试验,研究热泵干燥温度、热风干燥温度和转换点含水率对单位能耗、叶绿素含量、色泽L*值和吸湿性的影响,通过加权综合评分法推导多项式回归模型,进而优化联合干燥工艺参数。经响应面优化的干燥参数为:热泵干燥温度52℃、热风干燥温度73℃、转换点含水率58%,该工艺下单位能耗3 621. 36 k J/g、叶绿素含量6. 42 mg/g、色泽L*值46. 21、吸湿性7. 19%,综合评分值与预测值拟合度高达99. 632 5%,为红薯叶综合利用奠定了理论基础。  相似文献   

7.
摘 要:目的 研究南美白对虾中短波红外干燥特性及其干燥模型拟合。方法 在不同温度下(50、60、70℃)对南美白对虾进行干燥试验,并以HAD为对比。采用8种常用干燥模型对试验数据进行非线性回归拟合,确定最佳干燥模型,并对干燥模型进行验证。进一步分析了不同温度下南美白对虾有效水分扩散系数和干燥活化能。结果 南美白对虾MSWID过程中,干燥温度对干燥过程影响显著,提高干燥温度可提高干燥速率,加快干燥进程。比较模型评价指标发现,Two-term exponential模型可以很好的拟合南美白对虾干燥数据,模型预测值和试验值误差仅为2.09%,可较准确的预测干燥过程中南美白对虾的水分变化规律。二阶多项式回归方程可预测水分比随干燥温度和时间的变化。随着干燥温度的升高,MSWID和热风干燥的有效水分扩散系数分别从2.3721×10-9、2.3027×10-9升高到3.4027×10-9和3.1794×10-9 m2/s,活化能分别为16.5703 kJ/mol 和14.7839 kJ/mol。结论 二阶多项式方程能够很好的预测南美白对虾干燥过程中水分比的变化,本研究可为南美白对虾MSWID干燥过程的预测和控制提供理论依据。  相似文献   

8.
为提高规模化生产的百合品质,缩短干燥周期,以兰州百合为试样,运用JK-LB1700型薄层干燥试验台制干。系统研究了不同热风温度(60,70,80,90℃),热风速度(0.5,1.0,1.5,2.0m/s)和湿度(20%,30%,40%)对百合热风薄层干燥速率、色泽ΔE*值、VC含量、复水比的影响及各指标的变化规律;通过Weibull分布函数模拟了百合干燥过程及水分扩散规律。结果表明:随热风温度、热风速度增大百合热风薄层干燥时间显著缩短(P<0.01),不同相对湿度下无差异,但在干燥前期湿度大小与物料干燥速率呈正相关,后期呈负相关。采用Weibull分布函数能够准确(R2>0.99)描述百合热风薄层干燥过程,基于Weibull分布函数可准确获得百合薄层干燥水分有效扩散系数(1.213×10-6~3.992×10-6 m2/s),Deff值不仅受干燥参数影响,也受干燥设备和试样贮存时间的影响。试验干燥参数对百合品质指标色泽ΔE*值、VC含量和复水比的综合影响大小依次为干燥温度>热风速度>相对湿度,品质指标色泽ΔE*值和VC含量受干燥参数影响较大,复水比较小。  相似文献   

9.
利用热风对海鲜菇进行干燥,考察了干燥温度对海鲜菇干燥特性的影响,并用3种常用的干燥经验模型对其进行拟合。结果表明干燥温度对海鲜菇干燥的特性影响较大,随着干燥温度的升高,干燥效果提高明显。海鲜菇的热风干燥过程分为加速、降速和恒速3个阶段,其中降速为主要阶段。Page方程较适用于海鲜菇的热风干燥动力学模型的描述,可以用来控制与预测海鲜菇的热风干燥过程。海鲜菇的水分有效扩散系数随着热风干燥温度的升高而增大,当热风温度从333 K增加到353 K时,其水分有效扩散系数从1.62448×10-9 m2/s增加到4.32343×10-9 m2/s,海鲜菇热风干燥的活化能为48.17 kJ/mol,该研究为海鲜菇干燥过程的设备选型、节能降耗及干品品质提升提供技术支持。  相似文献   

10.
利用洞道式热风干燥装置,探讨不同的热风温度对三华李果糕干燥水分比MR和干燥速率v的影响.采用非线性回归法将7种常见薄层干燥数学模型与实验数据进行拟合,并追加验证实验.结果表明:三华李果糕热风干燥是内部水分扩散控制的降速干燥过程,且干燥温度不宜高于70℃.比较各模型的决定系数R2,卡方X2和标准误差eRMSE,Logarithmic模型能较好地描述和预测三华李果糕的干燥过程,其干燥动力学方程为:MR=1.0915exp[-(0.51093-0.01497T+ 0.00016T2)·t]-0.13348.  相似文献   

11.
以脱水率、固形物获取率、脱水率与固形物获取率比值、有效水分扩散系数、活化能、VC保留率、辣度、复水比、复原率和感官评价为考察指标,通过渗透脱水实验、渗后热风干燥实验和复水实验,考察了辣椒的渗透脱水特性、渗后热风干燥特性、复水特性和品质。结果表明:随着渗透温度的升高或渗透液中食盐含量的增加,辣椒的脱水率和固形物获取率增大。对渗透后的辣椒样品进行热风干燥处理发现,热风温度是影响热风干燥的最主要因素,其次是风速。辣椒样品的有效水分扩散系数随着温度的升高而增大,在风速为1.8 m/s的条件下,直接热风干燥辣椒样品和渗后热风干燥辣椒样品的活化能分别为(53.25±1.08)k J/mol和(44.42±0.88)k J/mol。渗后热风干燥样品的有效水分扩散系数、VC保留率、辣度、复水比和复原率均高于直接热风干燥样品,渗后热风干燥样品的复水特性和品质更好。  相似文献   

12.
紫薯热风干燥特性及数学模型   总被引:4,自引:0,他引:4  
目的:以新鲜紫薯为原料,研究其热风干燥特性及数学模型。方法:以铺料密度、干燥温度、热风风速为因素,研究其对紫薯热风干燥特性的影响,并通过SAS8.0软件对实验数据进行拟合得出紫薯热风干燥模型。结果:得到紫薯热风干燥的干燥特性曲线和干燥速率曲线;紫薯热风干燥数学模型为ln(-lnMR)=ln(-0.0104+0.000283T+0.00427V-0.0126P)+(1.1830-0.00067T+0.0487V-0.1332P)lnt(MR为水分比;T为干燥温度/℃,V为物料干燥热风速率/(m/s);P为物料干燥铺料密度/(g/cm2;t为干燥时间/min)。结论:干燥温度、物料铺料密度对紫薯热风干燥的速率有较大影响,而热风风速对干燥速率的影响较小;紫薯热风干燥符合Page模型。  相似文献   

13.
双孢菇洞道式热风干燥特性及工艺优化   总被引:1,自引:0,他引:1  
为确定双孢菇的最佳洞道式热风干燥工艺,在单因素试验的基础上,采用Box-Behnken响应面试验方法,分析干燥介质温度(X1)、空气出口风压(X2)、切片厚度(X3)3个因素对感官(Y1)、单位面积耗热量(Y2)、干燥速率(Y3)、复水率(Y4)4个指标的影响及交互作用。根据试验数据得出4个评价指标的二次回归模型。优化的切片双孢菇干燥条件是:干燥介质温度68℃、空气出口风压0.67kPa、切片厚度3.5mm,在此条件下,感官达8.3,复水率38.08%,能耗低。  相似文献   

14.
Pre-cooked soybeans were subjected to convective hot-air, microwave and combined microwave–hot-air dehydration. Three microwave levels (210, 300, 560 W) and three air temperatures (160, 180, 200 °C) were examined. Drying kinetics, rehydration kinetics and colour change were investigated relative to microwave level and air temperature. Combined microwave–hot-air drying decreased the drying time required when compared to drying with either hot-air or microwave energy alone. Predictive models were developed to describe dehydration and rehydration kinetics. Dehydration rate, rehydration rate and total colour change of rehydrated product generally increased with microwave level and air temperature. Within the studied range, optimal drying occurred for the lowest levels of both microwave and air temperature studied, i.e. microwave power = 210 W, air temperature = 160 °C.Industrial relevanceApplication of microwave energy simultaneously with convective hot-air drying to pre-cooked soybeans was up to four times faster when compared to convective drying alone, and up to twice as fast when compared to microwave drying alone. Rehydration time for soybeans subjected to combined microwave–hot-air drying was 50–60% less than for legumes subjected to either convective or microwave drying alone. Therefore, application of combined microwave–hot-air drying to pre-cooked soybeans resulted in significant saving in process time, while also producing a dehydrated product with fast rehydration properties.  相似文献   

15.
To display the advantages of two-stage intermittent microwave coupled with hot-air (60 °C) drying (IM&AD), different drying methods were compared. The activation power density of samples dried by IM&AD increased slightly and then rapidly as moisture content decreased. Drying kinetics, specific energy consumption and dried product quality, such as colour, rehydration ratio and α- and β-carotene contents, of carrot dried by IM&AD under the optimum conditions were assessed and compared with those of carrot dried by hot-air (60 °C) drying, hot-air (60 °C) drying followed by low-power microwave (145 W) drying, high-power microwave (175 W) drying followed by hot-air (60 °C) drying and high-power microwave (175 W) drying followed by low-power microwave (145 W) drying. The effective diffusivity increased gradually and then rapidly as moisture content decreased in all five drying processes. The IM&AD is a promising way for industrial application because it showed the lowest drying time with relatively low energy consumption and provided the best quality of final products with the best colour appearance, highest rehydration ratio and highest α- and β-carotene contents.  相似文献   

16.
《LWT》2005,38(5):549-553
Carrot slices were dried by using microwave, halogen lamp–microwave combination and hot-air drying. Microwave and halogen lamp–microwave combination drying were applied after carrots were dried to 0.47 kg moisture/kg dry solid by hot-air drying. Drying time, rehydration capacity and colour of the carrots dried by different methods were compared. The increase in microwave oven power level decreased the drying time. Microwave drying at the highest power and halogen lamp–microwave combination drying reduced the drying time to an extend of 98% in comparison to conventional hot-air drying and a high-quality dried product was obtained. Moreover, in the case of halogen lamp–microwave combination drying, moisture level was reduced to a level, which is lower than the one achieved by other methods. Less colour change occurred when microwave and halogen lamp–microwave combination drying were applied. Carrots dried in microwave and halogen lamp–microwave combination oven had lower L*, higher a* and b* values and had higher rehydration capacity as compared to hot-air drying.  相似文献   

17.
罗非鱼片的热风干燥模型及能耗研究   总被引:14,自引:0,他引:14  
对罗非鱼片进行了热风薄层干燥实验,通过实验数据建立了罗非鱼片的热风干燥的水分比与干燥时间关系的数学模型,根据建立的模型进行了拟合检验,结果显示模型的预测值与实测值拟合良好。此外,还研究了罗非鱼片热风薄层干燥过程中的能耗特点,结果表明,热风薄层干燥罗非鱼片的单位能耗降湿量最低为423.4g/kW·h,最高为1147.7g/kW·h。鱼片越小,每批干燥量越少,则单位能耗降湿量越大。  相似文献   

18.
对稻谷进行薄层热风干燥,采用正交试验方法研究稻谷在不同热风温度、初始含水率和热风风速条件下的热风干燥特性,比较10种数学模型在稻谷热风干燥中的适用性。结果表明:稻谷在热风干燥过程中没有出现明显的恒速干燥阶段,且干燥主要发生在降速干燥阶段;热风温度是影响稻谷热风干燥的最主要因素,其次是初始含水率;取初始含水率20%、热风温度50℃、热风风速1.4 m/s的方案为稻谷的最优热风干燥工艺,此时的最佳数学模型为Page模型;缓苏可有效抑制稻谷的爆腰率,缓苏温度越高,缓苏时间越长,缓苏效果越好;当初始含水率24%、热风温度40℃时,实验值和模型值的相对平均误差分别为1.563%和1.474%,表明模型预测的干燥曲线和实验所得的干燥曲线一致性较好;随着热风温度的升高,稻谷的有效水分扩散系数变大,经热风温度从40℃升高到60℃,其有效水分扩散系数由9.69×10~(-10) m~2/s增加到10.77×10~(-10) m~2/s,稻谷的干燥活化能为47.1 k J/mol。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号