首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
采用动电位扫描极化曲线、交流阻抗法和量子化学法,研究了N,N-二苯基硫脲(DPH-TU)在5%H2SO4介质中对A3钢的缓蚀作用及缓蚀机理,计算出了相应吸附过程的热力学数据,并与硫脲进行了对比。研究表明:N,N-二苯基硫脲是一种缓蚀效果显著的混合型缓蚀剂,它在A3钢表面发生化学吸附,吸附过程为放热过程,吸附行为服从El-Awady动力学模型,其缓蚀效果明显优于硫脲。  相似文献   

2.
通过使用扫描电镜,动电位极化曲线法和交流阻抗法,研究了2-巯基苯并咪唑及其分别与十六烷基三甲基溴化铵和硫脲复配对N80钢在0.5mol/LHCl中的缓蚀性能。针对酸性介质,添加缓蚀剂是最佳的方式。实验结果表明,2-巯基苯并咪唑的加入使得腐蚀电位正移,抑制测量电极阳极的腐蚀过程。而其与十六烷基三甲基溴化铵和硫脲复配后的缓蚀效果优于单独使用2-巯基苯并咪唑的性能。实验可知,十六烷基三甲基溴化铵和硫脲都与2-巯基苯并咪唑产生了明显的协同作用。这一相关研究具有极其重要的实际应用作用。  相似文献   

3.
本文采用失重法、极化曲线法、交流阻抗法研究环境友好型缓蚀剂4-吡啶甲酰肼与十二烷基苯磺酸钠(SDBS)对黄铜在3.0%Nacl介质中的缓蚀作用。结果表明:当4-吡啶甲酰肼浓度为0.50g/L,十二烷基苯磺酸钠浓度为0.35g/L时,其复配缓蚀效率达到99.65%。本文还对4-吡啶甲酰肼和十二烷基苯磺酸钠对黄铜的缓蚀机理进行了分析,表明4-吡啶甲酰肼在铜合金表面通过化学吸附形成保护膜,SDBS可在保护膜外形成疏水层,阻碍Cl对铜的侵蚀,两者通过协同缓蚀作用达到对铜的高效保护。  相似文献   

4.
采用极化曲线和交流阻抗谱法研究十二烷基苯磺酸钠(SDBS)缓蚀剂单独使用及与十六烷基三甲基溴化铵(CTAB)复配缓蚀剂在石油沉积水中对储油罐钢Q235的缓蚀性能。实验结果表明:单独使用SDBS缓蚀剂对Q235钢有一定的缓蚀效果;使用SDBS与CTAB复配缓蚀剂时,缓蚀效果明显提高,当两者复配比例为1:1且浓度都为0.5mmol/L时,缓蚀效率最高为91%,复配缓蚀剂具有很好的协同缓蚀效应。  相似文献   

5.
合成了N、N、N、N′-四-(2-苯并咪唑甲基)-1,2-7二胺分子(以BIEA表示)作为吸附型高效含氮有机缓蚀剂(AHNOI).在HC1溶液中失重法测得BIEA对纯铁的缓蚀率为91.2%(浓度为0.0071%),与癸胺复配时协同缓蚀率为98.7%.极化曲线结果表明:BIEA和BIEA与直链脂肪胺复配均能抑制纯铁的阴、阳极过程.  相似文献   

6.
羟丙基壳聚糖与表面活性剂的缓蚀协同效应   总被引:5,自引:2,他引:3  
卢浩  郭英 《表面技术》2014,43(6):69-74
目的研究羟丙基壳聚糖(HPCS)与Tw-20、十二烷基苯磺酸钠(SDBS)在1 mol/L HCl溶液中对Q235钢的协同缓蚀作用。方法进行Q235钢试片在1 mol/L HCl溶液中的腐蚀试验,通过失重法、动电位极化和电化学交流阻抗技术,分析HPCS及其与Tw-20,SDBS复配的缓蚀效果与机理。结果低浓度条件下,HPCS的缓蚀性能并不显著,100 mg/L时的缓蚀效率仅为63.03%,添加0.2 mg/L Tw-20可使50mg/L HPCS的缓蚀效率从51.73%提高到90.75%。当HPCS/Tw-20/SDBS以50,0.2,20 mg/L复配时,缓蚀效率高达93.77%,由于同时具备了非离子型和阴离子型表面活性剂的优点,其在60℃时缓蚀效率仍保持在71.11%。结论 Tw-20,SDBS对HPCS具有良好的协同缓蚀作用,HPCS/Tw-20和HPCS/Tw-20/SDBS复合缓蚀剂均为混合型缓蚀剂,作用机理为"几何覆盖效应"。  相似文献   

7.
制备了一种新型希夫碱缓蚀剂1-苯基-3-(1-环己胺)-1-丙烯(PCP),通过失重法、动电位极化扫描、电化学阻抗和扫描电镜等方法,研究了其在不同温度下对油套管钢N80钢的缓蚀性能。结果表明,该酸化缓蚀剂对N80钢在盐酸溶液中具有很好的缓蚀性能,属于混合型缓蚀剂,温度对其缓蚀效率的影响较小。  相似文献   

8.
合成了一种席夫碱:4-氯-N-[(吡啶-4基)-亚甲基]苯胺(CNP),并采用失重法、电化学阻抗谱和动电位极化曲线等,研究了CNP对N80钢在1mol/L HCl溶液中的缓蚀性能。结果表明,在1mol/L HCl溶液中,当缓蚀剂摩尔浓度为1.0mmol/L时,缓蚀率达到86.17%。其在N80钢表面吸附满足Langmuir吸附等温式,是一种混合型缓蚀剂。  相似文献   

9.
采用静态失重法、电化学方法和扫描电镜等方法,研究了一种双子表面活性剂(DBA2-12)对N80钢在盐酸介质中的吸附缓蚀性能。结果表明,DBA2-12对N80钢在1 mol/L的盐酸溶液中具有较好的缓蚀性能。随着缓蚀剂浓度的增加,缓蚀率增大;随着实验温度升高,缓蚀率减小。该缓蚀剂在N80钢表面的吸附遵循Langmuir吸附等温式,是一种混合抑制型缓蚀剂。  相似文献   

10.
卢浩  郭英 《腐蚀与防护》2015,(2):108-112,117
合成了具有良好水溶性的羟丙基壳聚糖(HPCS),采用傅立叶红外光谱仪(FTIR)对合成产物进行表征,采用失重法、动电位极化和电化学阻抗技术研究HPCS、十二烷基苯磺酸钠(SDBS)和焦磷酸钠(TSPP)缓蚀剂单体及其复配对Q235钢在1mol·L-1 HCl溶液中的缓蚀性能。结果表明,单独添加HPCS、SDBS、TSPP时缓蚀效率较低;HPCS/SDBS、HPCS/TSPP分别以浓度比100∶70(mg·L-1)和100∶30(mg·L-1)复配,缓蚀效率分别提高到83.30%和82.54%;HPCS、SDBS、TSPP三者复合具有良好的协同缓蚀作用,当以浓度比50∶20∶10(mg·L-1)复配时,缓蚀率达到91.93%,且在60℃时仍维持在62.60%。  相似文献   

11.
以合成的N,N′-二(4-羟基苄叉)乙二胺双希夫碱作为缓蚀剂,通过失重法、动电位极化曲线、电化学阻抗谱评定了该缓蚀剂在HCl溶液中对5052铝合金的缓蚀作用。结果表明:该缓蚀剂在1.0mol/L HCl溶液中对5052铝合金具有很好的缓蚀效果,且缓蚀率随着缓蚀剂含量的增加而增大;N,N′-二(4-羟基苄叉)乙二胺双希夫碱缓蚀剂在5052铝合金表面的吸附属于物理和化学的混合吸附,并遵循Langmuir吸附等温式。  相似文献   

12.
高效含氮有机缓蚀剂BIEA的研究   总被引:3,自引:0,他引:3  
合成了一种含氮有机化合物N,N,N′,N′-四-(2-苯并咪唑甲基)-1,2-乙二胺(BIEA),采用失重法和电化学方法测定了其在盐酸溶液中对碳钢的缓蚀效果。结果表明,BIEA对45^#钢在浓直酸中的腐蚀有较好的缓蚀作用,是一种高效缓蚀剂。BIEA可同时抑制45^#钢在盐酸中腐蚀的阴极过程与阳极过程,是混合型缓蚀剂。  相似文献   

13.
采用傅里叶变换红外光谱、气相色谱-质谱、电化学阻抗谱、极化曲线和扫描电子显微镜研究了苦丁茶(KDC)提取物在含3.5%NaCl(质量分数)和饱和CO_2溶液中对N80钢的缓蚀作用。结果表明:苦丁茶提取物属于混合型缓蚀剂;该缓蚀剂对N80钢在含3.5%NaCl和饱和CO_2溶液中具有一定的缓蚀作用,能够有效抑制N80钢的腐蚀;缓蚀率随着缓蚀剂含量的增大而提高,当加入4%(体积分数)苦丁茶缓蚀剂时,根据极化曲线和电化学阻抗谱计算得到的缓蚀率分别达到了92.47%和96.90%。  相似文献   

14.
采用伯胺与二卤代乙醚首先合成中间体N,N′-二烷基-3-氧杂-1,5-戊二胺,而后中间体与氯乙酸反应得到目标产物两性双子表面活性剂N,N′-二烷基-N,N′-二羧酸基-3-氧杂-1,5-戊二胺。对两性双子表面活性剂进行复配,测试其缓蚀性能,并与单独使用两性双子表面活性剂的缓蚀效果相比较。结果表明:双子表面活性剂与N-十二烷基苯并咪唑双子表面活性剂复配后,其缓蚀性能比单独使用两性双子表面活性剂的更好。在1.0mol/L HCl溶液中,两性双子表面活性剂按摩尔比2∶1进行复配时,Q235钢的腐蚀电流密度最小,容抗弧半径最大,缓蚀效果最好。  相似文献   

15.
CPB和TU对X70钢在含SO2酸性溶液中的缓蚀作用   总被引:6,自引:1,他引:6  
 采用交流阻抗法和极化曲线法研究了溴代十六烷基吡啶(CPB)和硫脲(TU)在复配前后对X70钢在H2SO3溶液中的缓蚀作用.研究发现:H2SO3的浓度为10 mmol/L、pH=3.7的HAc-NaAc缓冲体系中,溴代十六烷基吡啶(CPB) 与硫脲(TU)的缓蚀率随着浓度的增加而增加,溴代十六烷基吡啶(CPB)的浓度达到5×10-6 kg/L时的缓蚀性能最佳,而硫脲(TU)的浓度达到50×10-6 kg/L时的缓蚀性能最佳.复配实验结果表明:当缓蚀剂的总浓度为25×10-6kg/L,溴代十六烷基吡啶(CPB)和硫脲(TU)复配质量浓度比为1∶1时缓蚀效果最好.   相似文献   

16.
过氧乙酸中硅酸钠对 Q235 钢的缓蚀影响   总被引:2,自引:2,他引:0  
目的研究HEDP、十二烷基苯磺酸钠(SDBS)和硅酸钠的复配物在过氧乙酸溶液中对Q235钢缓蚀效率的影响。方法采用静态失重法和动电位极化曲线法,研究常温下在过氧乙酸质量浓度为2000 mg/L的体系中,硅酸钠与HEDP、SDBS复配时对碳钢的缓蚀协同效应,确定最佳配比,分析缓蚀机理。结果 HEDP、SDBS和硅酸钠的复配物,在过氧乙酸溶液中对Q235钢均有一定的缓蚀效果,缓蚀效率依次为:硅酸钠与HEDP硅酸钠与SDBS硅酸钠。当硅酸钠质量浓度为200 mg/L,HEDP质量浓度为100 mg/L复配时,缓蚀效率最高达到90.42%。当硅酸钠质量浓度为200 mg/L,SDBS质量浓度为200mg/L复配时,缓蚀效率最高达到57.76%。单一硅酸钠缓蚀剂的缓蚀效率最高达40.53%。结论硅酸钠能同时抑制阳极和阴极的反应,与HEDP有很好的缓蚀协同效应,硅酸钠与HEDP复配优于与SDBS复配的缓蚀效果。较优复配缓蚀剂为:硅酸钠200 mg/L,HEDP 100 mg/L。  相似文献   

17.
曼尼希碱与硫脲在气井采出水腐蚀体系中的缓蚀协同作用   总被引:5,自引:5,他引:0  
孟凡宁  李谦定  李善建 《表面技术》2014,43(3):90-94,110
目的寻找新型缓蚀剂,以解决碳钢在气井采出水中的腐蚀问题。方法以N80钢在80℃气井采出水中的腐蚀为研究对象,通过极化曲线和电化学阻抗谱,研究曼尼希碱与硫脲进行复配的缓蚀效果,并探讨缓蚀协同作用机理。结果硫脲是一种混合型缓蚀剂,对N80钢的阴极过程和阳极过程都有强烈的抑制作用;曼尼希碱是一种以抑制阴极为主的混合型缓蚀剂。二者复配后,对N80钢在气井采出水中的腐蚀表现出优异的缓蚀协同效应,当曼尼希碱添加量为0.75%,硫脲的质量浓度为2.5 mg/L时,缓蚀效果最好。结论曼尼希碱与硫脲二者复配使用时,在N80钢表面可能形成一种双层结构的吸附膜,内层以硫脲为主,外层以曼妮希碱为主。  相似文献   

18.
目的考察一种新型的咪唑啉类缓蚀剂CPA-1对N80钢在CO_2环境下的缓蚀性能。方法通过失重法、电化学阻抗谱和极化曲线,研究了在不同温度下缓蚀率和缓蚀剂浓度之间的关系,利用扫描电子显微镜和扫描电化学显微镜对表面形貌进行了观察分析,根据等温吸附模型研究了咪唑啉缓蚀剂在N80钢表面的吸附类型。结果失重结果表明,缓蚀剂的缓蚀效率随浓度的增大而升高,当温度为40℃、缓蚀剂质量浓度为250 mg/L时,缓蚀率达到95%;温度升高至80℃时,缓蚀率下降至87%。电化学试验表明,咪唑啉类缓蚀剂对阴极和阳极反应均有抑制作用。表面形貌分析表明,缓蚀剂能有效改善金属表面的腐蚀程度。结论咪唑啉类缓蚀剂CPA-1属于混合型缓蚀剂,对N80钢具有较好的缓蚀性能。缓蚀机理为通过吸附方式在金属表面形成一层吸附膜抑制金属腐蚀,吸附方式遵循Langmuir吸附等温模型,物理吸附和化学吸附均会在金属表面发生。  相似文献   

19.
为解决碳钢在高硬度电解质水溶液中的垢下腐蚀问题,着重考察了2-甲基咪唑啉缓蚀剂在模拟腐蚀体系中的缓蚀性能及其复配效应。研究结果表明:温度为50℃、浓度为60 mg/L时,2-甲基咪唑啉的缓蚀效果最好;2-甲基咪唑啉与硫脲及碘化钾均有较好的复配效应,且将三者复配时也具有较好的缓蚀效果;2-甲基咪唑啉与硫脲和碘化钾的配比均为1∶1时缓蚀效果最好。  相似文献   

20.
徐婷  张阔  杜敏 《表面技术》2020,49(11):33-40
目的 针对锌在海洋大气环境中的腐蚀状况,筛选有效的缓蚀复配体系,进一步研究多聚磷酸钠和硫脲的缓蚀剂复配体系在模拟酸性海洋大气环境中对锌的腐蚀影响,探讨复配体系对锌的缓蚀机理。方法 利用失重法评价复配体系在不同温度、不同浓度下的缓蚀性能,并利用强极化曲线法、电化学阻抗法和X射线光电子能谱法(XPS)探讨其缓蚀机理。结果 在40 ℃时,pH=4、0.3 mol/L的NaCl 溶液中,质量比1∶4的多聚磷酸钠和硫脲复配缓蚀剂能够有效抑制锌和热镀锌的腐蚀,缓蚀率分别达到92.19%和91.39%。该复配缓蚀剂对锌在气相环境中的腐蚀同样具有良好的抑制作用。电化学测试结果表明,在25、40、60 ℃时,缓蚀率随浓度的升高而增加;在80 ℃时,缓蚀率随浓度的增大而减弱。通过表面成分分析发现,添加复配缓蚀剂后,在锌表面出现了N、S、P三种新元素。结论 多聚磷酸钠和硫脲的复配体系是混合抑制型缓蚀剂。复配缓蚀剂中的多聚磷酸钠能够在锌表面形成保护性薄膜。硫脲属于小分子有机物,容易吸附在锌的表面,所以它能填充膜的间隙,并与锌紧密地结合在一起。多聚磷酸钠和硫脲共同作用可以使锌表面形成更致密、更稳定的膜,从而增强对锌的保护作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号