首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 332 毫秒
1.
有限元强度折减法中边坡三种失效判据的适用性研究   总被引:7,自引:0,他引:7  
采用有限元强度折减法进行边坡稳定性分析时,边坡的安全系数在很大程度上依赖选用的失稳判别标准。通常以特征部位位移的突变性、塑性区的贯通性、数值计算的收敛性作为边坡失稳判据。然而,对这三种判据的适用性学术界一直存在不同看法。以一般边坡和陡边坡作为算例模型,对比分析三种常用的判据判定安全系数的大小。结果表明:对一般边坡三种判据有较好的一致性,陡边坡三种判据存在较大的差异。研究发现:以往用于强度折减法的屈服准则没有考虑拉伸截断,即在强度折减过程中过高的估计了材料的抗拉强度是导致三种判据对应的计算结果存在广泛争议的重要原因,并通过计算钟乳石模型的安全系数对这一结论进行验证。因此,有限元强度折减法中应考虑抗拉强度指标与抗剪强度指标同等地减少,才能保证计算结果的正确性及三种判据的一致性。考虑张拉、剪切破坏的强度折减法在边坡稳定性计算中具有普遍的适用性,是对强度折减法的改进和推动。  相似文献   

2.
基于有限元强度折减法,利用ANSYS有限元软件,对岩质边坡在地应力作用下进行了稳定性分析。选用D-P屈服准则,以边坡的位移计算不收敛及塑性区贯通作为边坡失稳判据,得到边坡的安全系数及破坏滑动面。通过与成熟的极限平衡法做比较,证明边坡稳定性安全系数是合理的,从而也说明强度折减法在岩质边坡稳定性分析中的优越性。  相似文献   

3.
土坡中基于位移突变失稳判据的一种改进方法   总被引:1,自引:0,他引:1  
鉴于目前边坡失稳准则的多样性及其不确定性,如何选择或提出一种既能满足工程需要又能便于应用的失稳判定准则显得尤为重要.首先分析讨论了目前三种较常用的失稳判定准则,然后在位移突变判据的基础上提出了一种改进的失稳判定方法,该方法通过绘制边坡最大水平位移增量与折减系数增量的比值△S/△F跟折减系数Fs的关系曲线来确定边坡安全系数,并通过简化的实例模型证明了其适用性.  相似文献   

4.
强度折减有限元法分析边坡稳定性的精度探讨   总被引:5,自引:0,他引:5  
对强度折减有限元法分析边坡稳定性中的精度进行了探讨.对比分析表明:边坡安全系数随着剪胀角ψ的增大略有增大,但总体上可以忽略不计,有限元计算中,可取ψ=0°进行边坡稳定性分析;弹性模量E和泊松比ν对安全系数基本上没有影响;采用位移是否突变和塑性区是否贯通作为边坡的失稳判据,对比前后计算步骤中的位移和塑性区特性,可以减少或消除非确定性因素对安全系数的影响;计算模型的边界范围大小,需根据具体边坡的变形需要来确定,其大小应足以让边坡的破坏滑动面自由发展.通过算例分析表明,在采用合理的失稳判据条件下,用有限元强度折减法得到的边坡安全系数与极限平衡法的结果相当,说明采用强度折减有限元法分析边坡稳定性是合理可行的.  相似文献   

5.
彭晓钢  李嘉  李有志  江建 《建筑施工》2021,43(2):310-313
利用有限元强度折减法进行边坡稳定分析时,对边坡稳定状态的判断影响到强度折减有限元法得到的折减系数,进而影响安全系数的计算结果。以Griffiths边坡为算例,在Abaqus软件中分别对采用数值迭代不收敛、特征部位位移突变、广义塑性应变或等效塑性应变贯通3类判据作为判断失稳的标准进行了计算。结果表明数值计算结果是否收敛与边坡是否失稳存在对应关系,计算因不收敛而终止时的强度折减系数变化不大,有限元收敛条件的设置对结果影响不大,建议利用有限元计算收敛作为失稳判定的依据。  相似文献   

6.
基于有限元强度折减原理,分别以特征点位移突变、等效塑形应变贯通和计算收敛等方法作为地铁车站隧道交叉段整体稳定性分析的失稳破坏判据,进行整体安全系数计算,通过实例分析,提出适合地铁车站隧道交叉段整体稳定性分析的强度折减判据。研究结果表明:有限元强度折减法可以定量地得出地铁车站隧道交叉段的整体安全系数;收敛判据计算得出的安全系数明显大于其他两种判据的结果,单独使用任何一种判据都不能真实地确定安全系数;采用特征点位移突变与等效塑形应变贯通两者相结合的综合判据可以较好的得到地铁车站隧道交叉段的整体安全系数。  相似文献   

7.
非均质边坡强度折减法折减范围研究   总被引:2,自引:0,他引:2  
目前强度折减法分析边坡稳定的研究多针对均质简单边坡,而当涉及到非均质边坡时,就存在选择局部区域还是选择所有区域进行强度折减的问题。以FLAC3D为平台,基于计算收敛性准则利用内嵌FISH语言二次开发了能够自动搜索安全系数的整体强度折减代码和局部强度折减代码;结合特征点位移突变准则利用内嵌FISH语言二次开发了依据位移–折减系数曲线判定边坡安全系数的整体强度折减代码和局部强度折减代码;通过有关算例,验证了自编程序的有效性。在此基础上,针对一个非均质边坡分别按照整体强度折减与局部强度折减进行稳定性数值分析,研究表明,两者所得安全系数并不总是一致,整体强度折减法计算所得安全系数与极限平衡法计算结果较为一致,而局部强度折减法若不能合理选择折减区域则不能正确评价边坡的稳定性。因此,采用强度折减法对非均质边坡进行稳定性分析时,建议对整个模型都进行折减。  相似文献   

8.
介绍了一种基于有限元强度折减法的边坡稳定性分析方法,讨论了该方法的基本原理、安全系数的物理意义、屈服准则和流动法则的选用及边坡破坏的判据等。算例通过不断折减边坡强度参数,代入有限元程序进行边坡稳定性计算,直至计算不收敛时的折减系数即为边坡的安全系数。结果表明:随着折减系数的不断增大并达到某一数值时,边坡内塑性应变自坡底向坡顶逐渐贯通,边坡达到极限状态,此时的折减系数即为安全系数,有限元强度折减法对边坡稳定性分析具有良好的适用性。  相似文献   

9.
基于强度折减有限元法,本文研究了边坡的稳定性,并建立概化模型进行了分析,结果表明强度折减有限元法能够较可靠地得出边坡的稳定性安全系数,同时提出通过多种失稳判据相结合的方法可以避免单一判据的局限性,能更客观地反映边坡的安全状态。  相似文献   

10.
采用强度折减法,根据基于摩尔-库仑屈服准则的广义米塞斯屈服准则(D—P准则),通过前后处理软件,对边坡稳定性进行非线性有限元分析。综合考虑土体参数的变化和边坡边界条件的特点,从计算结果中分析边坡的位移,变形及其塑性发展趋势,从而可以得出安全系数。结果表明:强度折减法分析边坡稳定性时,不但能够得到边坡的安全系数,而且能够确定最危险滑移面。  相似文献   

11.
本文采用光滑粒子流体动力学(SPH)法对土质边坡稳定性及其失稳后的大变形进行数值模拟研究。该方法既可以分析边坡的稳定性系数和潜在滑移面,又可以对土质边坡失稳后的大变形过程进行模拟,从而弥补了传统数值模拟分析方法的不足,为土质边坡稳定性及失稳后滑坡大变形分析提供了一种新的方法。首先,采用Fortran语言编写了模拟土质边坡稳定性及失稳后滑坡大变形分析的SPH程序;其次,采用一个经典算例,验证了本文程序和方法在进行边坡稳定性分析时的准确性;最后,为验证该法模拟黏性土质边坡滑坡大变形的准确性,笔者自行设计了一组黏性土体滑坡大变形物理实验并与SPH模拟结果进行了对比。研究成果表明,基于弹塑性本构模型及D-P屈服准则的SPH方法可以较准确的模拟稳定性系数及潜在滑移面,并且可以较准确地模拟失稳后的滑坡大变形发展过程,弥补了目前数值模拟方法的不足,是一种值得推广的新型稳定性及滑坡大变形分析方法。  相似文献   

12.
以塑性区贯通、位移增量突变、计算不收敛3种边坡失稳判据为依据,采用强度折减有限元法和重度增加有限元法对简单边坡进行了分析。结果表明:以边坡潜在滑动面上某点位移增量突变作为边坡失稳判据是准确的;对于不同土体强度参数下,以位移增量关系曲线突变为判据得到的边坡的安全系数较另外两种方法稳定;对应于塑性区贯通、位移增量曲线突变和计算不收敛的3种判据,边坡潜在滑动面依次向深层发展,边坡的安全系数依次增加。  相似文献   

13.
强度折减DDA法及其在边坡稳定分析中的应用   总被引:2,自引:1,他引:1  
 在自行研制的非连续变形分析程序中实现自动强度折减法以模拟边坡的稳定性和安全系数。针对强度折减有限元法收敛标准的不确定性,通过分析滑块在边坡上的稳定性,提出以边坡滑移位移与强度折减系数曲线的最大曲率所对应的折减系数为边坡安全系数的判别标准,该判别标准克服了“位移突变准则”不准确的缺点;并基于该判别标准,分析水库岩体边坡的稳定性并得到岩体边坡安全系数随库水位变化的规律;最后对小湾某高边坡进行开挖模拟及开挖后边坡的稳定性进行计算分析。  相似文献   

14.
基于动态和整体强度折减法的边坡稳定性分析   总被引:6,自引:0,他引:6  
 基于强度折减法的边坡稳定性评价只能获得静态单一的安全系数。为获得边坡渐进失稳过程中的稳定性状况,提出基于动态和整体强度折减法的边坡动态稳定性评价方法,利用动态强度折减法搜索出渐进扩展的滑动面,并结合整体强度折减法计算安全系数的优势,在边坡渐进失稳过程中计算动态安全系数,从而实现对边坡失稳全过程的分析和调控。首先,利用动态强度折减法确定出一系列扩展的滑动面,然后,在每一步折减中降低滑动面的强度参数,随后采用整体强度折减法计算此刻的安全系数。最后进行滑动面扩展–安全系数的对应分析,根据安全系数的动态变化规律对边坡进行稳定性评价和支护。两实例计算表明,动态强度折减法获得的滑动面与实际监测数据相吻合,合理反映边坡(滑坡)的变形破坏特征。利用动态和整体强度折减法的各自优势,获得边坡渐进失稳过程中的一系列动态安全系数,更利于边坡的稳定性判断及支护措施建议。相比于极限平衡法,动态强度折减法也更适合于非均质边坡的稳定性评价,能搜索出正确的潜在滑动面。  相似文献   

15.
《Soils and Foundations》2023,63(4):101338
A simulation framework based on meshless method has become an alternative numerical tool to model many deformation problems in geotechnical engineering. Large deformations in the failure zone can alter porosity, permeability etc., which in turn can affect the process of the failure. In this paper, a two-phase model in the framework of Smooth Particle Hydrodynamics (SPH) is introduced to model the interaction between water and soil through drag forces according to Darcy’s law. Changes in soil porosity and associated permeability are automatically adjusted within this framework. Firstly, two different problems i.e., flow through porous media and fluidized bed problem, are investigated to examine the suitability, and stability of the proposed SPH method. Then, the stability analysis of a soil slope under different water level conditions is performed with the strength reduction technique, and the groundwater effect of the slope is simulated. It is found that owing to the negative impact of seepage on soil slope, the horizontal displacement of the slope can be significantly larger. Afterwards, the influence of the variable permeabilities on the slope failure is investigated. The simulation results show that the change in permeability has a slight effect on the slope. Although the calculated safety factor does not change, the sliding distance differs by about 10%. The initial porosity has a large negative influence on the stability of the slope. The developed SPH model has been shown to be a valuable and effective tool for modelling complex problems that are challenging to be addressed with traditional approaches.  相似文献   

16.
The failure criteria of practical soil mass are very complex, and have significant influence on the safety factor of slope stability. The Coulomb strength criterion and the power-law failure criterion are classically simplified. Each one has limited applicability owing to the noticeable difference between calculated predictions and actual results in some cases. In the work reported here, an analysis method based on the least square support vector machine (LSSVM), a machine learning model, is purposefully provided to establish a complex nonlinear failure criterion via iteration computation based on strength test data of the soil, which is of more extensive applicability to many problems of slope stability. In particular, three evaluation indexes including coefficient of determination, mean absolute percentage error, and mean square error indicate that fitting precision of the machine learning-based failure criterion is better than those of the linear Coulomb criterion and nonlinear power-law criterion. Based on the proposed LSSVM approach to determine the failure criterion, the limit equilibrium method can be used to calculate the safety factor of three-dimensional slope stability. Analysis of results of the safety factor of two three-dimensional homogeneous slopes shows that the maximum relative errors between the proposed approach and the linear failure criterion-based method and the power-law failure criterion-based method are about 12% and 7%, respectively.  相似文献   

17.
 滑坡的蠕滑位移过程本质上就是滑坡岩土体的损伤变形演化过程。因此,在系统分析蠕滑型边坡不同蠕滑变形阶段的变形演化特征与损伤破坏机制基础上,运用损伤力学基本原理,探索和揭示边坡蠕滑变形与其稳定性系数的相互内在联系,确定边坡的蠕滑位移与其坡体损伤变量及其稳定性系数的定量关系,并依此建立基于边坡蠕滑位移参数确定其动态稳定性系数的方法;同时,依据位移–时序曲线切线角速率和加速率参数变化规律,研究和确定基于安全系数的边坡稳定性位移监测预警判据 和边坡安全稳定预警时间 。最后,以典型鸡鸣寺滑坡为例,运用蠕滑型边坡动态稳定性系数与位移监测预警判据,对该滑坡的稳定性演化过程进行后验分析与评价,并同时与斋藤迪孝法预测结果进行对比,其分析评价结果与该滑坡实际稳定演化规律基本吻合,表明所提出和确定的有关位移监测预警判据参数,在蠕滑型边坡的稳定性评价与预测中具有一定的实用性和有效性。  相似文献   

18.
基于强度折减的拉格朗日差分方法分析土坡稳定性   总被引:66,自引:2,他引:66       下载免费PDF全文
运用连续介质显式拉格朗日有限差分方法,通过逐步折减土体的抗剪强度,来分析土坡稳定的安全系数。实例计算表明,强度折减系数达到某一数值时,土坡顶点的水平位移会快速增加。根据这一现象,提出了界定土坡破坏的坡顶位移增量标准。即坡顶位移增量与折减系数增量之比大于系数sc为土坡破坏,并建议了sc的取值。这样可避免强度采用折减方法分析土坡稳定时,以不收敛等"模糊"概念作为土坡破坏状态的判别标准,具有物理意义明确、客观具体、便于数值计算等特点。与瑞典圆弧法、简化Bishop法及Spencer法比较可见,这些方法的潜在滑动面形状相似、位置十分接近,说明本文方法及"破坏"状态的判别标准是合适的。文中对剪胀角的影响进行了讨论,得到"不考虑"剪胀性的关联流动法则会高估土坡稳定安全系数的结论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号