首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
埋地钢质管道杂散电流的检测与防护   总被引:1,自引:0,他引:1  
随着机动轨车及电力网络的快速发展,其引起的杂散电流给埋地钢质管道造成的快速腐蚀已严重危害管道安全。首先介绍了常见的杂散电流干扰源及其可能造成的严重危害,接着介绍了杂散电流是否存在及干扰源定位的检测判断方法,之后介绍了当前常用的杂散电流防护与排流方法,最后以工程实例说明杂散电流的检测、判断方法和排流改造及效果整个过程。文章系统地从杂散电流的来源、判断、干扰源确定及排流和效果评定介绍了埋地钢质管道杂散电流防护工程的流程。  相似文献   

2.
随着国家能源工业、铁路工业的快速发展,埋地钢质管道与高压线、交流电气化铁路共用走廊的情况越来越多,埋地钢质管道上容易产生交流杂散电流。交流杂散电流从防腐蚀层破损处流出会产生交流腐蚀,并对阴极保护系统的安全运行造成不利影响,如果埋地钢质管道上交流电压达到一定限值,会威胁管道维护人员的安全。本文对交流杂散电流的腐蚀机理、检测方法、信号处理方法及评价准则进行了介绍。以期管道建设人员、检测人员、维护人员对此引起足够的重视。  相似文献   

3.
参照埋地管道服役环境,搭建钢质管道交流干扰腐蚀实验平台。采用腐蚀试片失重法,测试钢质管道在土壤模拟溶液中的腐蚀速率,研究交流杂散电流干扰环境下杂散电流大小、土壤电导率以及土壤酸碱度对钢质管道腐蚀速率的影响。实验结果表明:杂散电流对钢质管道的腐蚀速率影响最大,土壤酸碱度和土壤电导率对钢质管道的腐蚀速率影响规律复杂。  相似文献   

4.
随着机动轨车及电力网络的快速发展,其引起的杂散电流给埋地钢质管道造成的腐蚀已严重危害管道安全。本文介绍了川气东送金陵支线杂散电流检测判断方法,杂散电流干扰防护措施,并提出了利用锌带排流针对埋地钢制管道直流腐蚀进行防护的方法。  相似文献   

5.
杂散电流腐蚀规律及防护技术   总被引:1,自引:0,他引:1  
本文通过现场调查和测试,确定不同情况下高压线路对周围埋地金属管道的杂散电流腐蚀影响规律,并在杂散电流腐蚀调查评价的基础上,对杂散电流影响严重的管道实施相应的排流保护措施,确保埋地金属管道安全平稳运行,减少管道穿孔维修机率,延长了管道的使用寿命。  相似文献   

6.
在机场地铁运营过程中,由于回流轨存在着电气阻抗,牵引电流在回流轨中产生压降,并且回流轨对地存在着电位差,会导致回流线对隧道道床、周围土壤介质、机坪埋地管道存在着一定的泄漏电流,形成杂散电流。当杂散电流流出管道时,会对管道产生严重的电化学腐蚀影响,最终会导致管道腐蚀穿孔泄漏。因此,研究杂散电流对机坪管道影响,对提高机坪管道安全稳定运行的可靠性有非常大的意义。  相似文献   

7.
油田埋地金属管道周围存在着大量的高压输电线路,这些设施在运行过程中会向大地释放大量的杂散电流,造成油气管道的腐蚀泄露。本文进行了高压输电线路周围埋地金属管道杂散电流的现场测试,结果表明:长输石油管道受杂散电流影响严重。尤其当高压输电线路与埋地输油管道近距离平行时,埋地输油管道中杂散电流更严重;油气集输管道受杂散电流影响也十分严重,管地电位波动值和管地电位最大正向偏移值都随着与高压输电线路距离的增加而减小;经排流保护措施后,管道的管地电位波动值和最大正向偏移值都明显减小,管道受杂散电流影响明显减弱,并达到了排流保护的标准。  相似文献   

8.
北京市轨道交通发展迅猛,泄漏到大地的杂散电流日益增多,这些杂散电流会对埋地燃气管道造成干扰。本文对北京市埋地燃气管道所受地铁杂散电流干扰情况进行了现场检测,分析了干扰的程度和范围;研究了管道与地铁相对位置对杂散电流干扰的影响规律,同时探讨了北京地区地铁杂散电流干扰下管地电位的波动特性。结果表明:随着管道与地铁间距的减小,干扰越来越严重,并且在相同间距下交叉点的干扰程度大于并行段。地铁检修站附近的管道受杂散电流干扰更大。北京地区地铁杂散电流干扰下管地电位的波动周期主要分布在50~200 s间。  相似文献   

9.
介绍了一种新型的极化试片电流测试方法。该技术采用高精度数据记录仪监测受到动态直流杂散电流干扰的极化试片中流进、流出的直流电流。该结果可以用于埋地钢质管道直流杂散电流干扰的评价,为查找直流杂散电流干扰腐蚀风险点提供依据。  相似文献   

10.
受直流杂散电流影响埋地管线的ANSYS模拟   总被引:4,自引:0,他引:4  
随着交通运输业的发展和电气化设施的建设升级,杂散电流对埋地管道的影响日益严重.本工作利用ANSYS软件的电磁仿真功能,对埋地管线杂散电流进行了有限元分析,研究了杂散电流对不同的间距及交叉角度下埋地管道附近电位电场的影响规律,为埋地管道杂散电流腐蚀研究提供一定的依据.  相似文献   

11.
本文通过对新疆油田埋地管线受电气化铁路杂散电流影响进行了调查研究,发现电气化铁路产生的杂散电流对埋地管线影响严重,其中最大的正向偏移值达到了近7V,这将导致埋地管线阳极溶解反应加剧,进而导致管线腐蚀穿孔和油气泄露。当电气化铁路通过时,临近的埋地管线中杂散电流明显增大,而且影响时间最长高达近30分钟。电气化铁路与管线平行时对埋地管线影响要大于交叉情况。通过对杂散电流影响严重的测试点进行排流保护,可以最大限度地减轻杂散电流对埋地管线的影响。  相似文献   

12.
本文介绍了城市地铁杂散电流的产生原理、对埋地输油金属管道的危害,并结合上海航油管道的案例介绍了杂散电流干扰检测方法。  相似文献   

13.
深圳地铁发展迅猛,泄漏到大地中的杂散电流可导致埋地管道腐蚀加速。对深圳地铁杂散电流干扰下的输水管道进行检测,确定管道的自腐蚀电位,探讨试片材质和表面状态对检测结果的影响,同时研究了管道受杂散电流干扰的规律。结果表明:杂散电流干扰程度与地铁和管道的相对位置有一定的关系,随着管道与地铁间距离减小,管道受到杂散电流干扰越来越严重;并且在相同距离下,交叉段受到干扰程度要大于平行段。同时不同材质的管道抗干扰能力也不相同。  相似文献   

14.
通过实验室装置模拟了兰州地铁2号线直流杂散电流对埋地管道的影响,并在不同层数收集网、不同网格面积收集网、不同供电方式及不同供电电压条件下进行了直流杂散电流收集效果测试。结果表明,供电方式、供电电压对杂散电流影响较大,若在走行轨与埋地管道间敷设收集网,收集网材料为铜网、收集网为3层、收集网网格面积为16cm2时收集效果最佳,并对原因进行了分析及提出相应的防腐措施。  相似文献   

15.
随着我国地铁和管道的不断建设,由杂散电流引起的管道腐蚀问题受到人们广泛关注。因杂散电流分布复杂且影响因素众多,导致埋地管道的有效防护成为实际工程中的一大难题。为了更好地解决杂散电流对埋地管道的干扰问题,详细介绍了杂散电流的分类、腐蚀机理和干扰指标,从地铁和管道2个角度综合论述了国内外学者对杂散电流分布模型、杂散电流源保护和埋地管道排流措施及其杂散电流监测技术的研究现状和进展,明确了进一步完善杂散电流分布模型的精确模拟和发展新型杂散电流监测新技术对于埋地管道的防护意义重大,并对未来管道受杂散电流干扰问题的研究方向进行了展望。研究结果能够为研究人员开展管道杂散电流干扰研究提供参考,具有重要的实际工程意义。  相似文献   

16.
杂散电流是指在管道周围土壤环境中漫流的一种大小、方向都不固定的电流,这种电流对金属管道的腐蚀称为杂散电流腐蚀,属于电解腐蚀范畴。动态杂散电流干扰程度和极性随时间变化,由于其变化规律因干扰源的情况变化而变化。进行动态杂散电流的探测,找出干扰的来源相当困难。埋地管线上典型的动态杂散电流来自直流电力驱动系统。在受干扰的管道附近,表现为:管-地电位不稳定、管线电位严重偏离正常值,以及土壤电位梯度反常等,杂散电流通过邻近防腐层良好的管道网络可以传送到几公里以外,甚至更远的地方,杂散干扰电流会对邻近的地下金属管线/地下结构产生非常有害的影响。杂散电流干扰的危害表现在:在管道的杂散电流流出点(也称为放电点),管体会受发生强烈的电解腐蚀。  相似文献   

17.
通过同步监测(有轨)电车的轨地电位和管道通/断电电位,研究了超级电容储能供电型有轨电车对埋地钢质管道的杂散电流干扰。结果表明:电车在车站充电时,铁轨轨地电位有明显的正负向偏移,杂散电流通过铁轨吸收和排放。管道受电车杂散电流干扰影响时,通电电位为-7.060~3.023 V(相对铜/硫酸铜参比电极,CSE),断电电位为-1.219~-0.143 VCSE,沿线多处管道断电电位正于-0.85 V,不满足阴保准则,干扰影响范围远大于97 km。管道靠近与远离电车的管段互为杂散电流流入和流出的区域,且靠近电车管段的干扰程度更大。电车在牵引变电站供电范围内的车站充电时,铁轨轨地电位上升,铁轨流出的杂散电流就近流入电车附近的管段,杂散电流顺着管道往远离电车的方向流动,在远离电车的管段流出。  相似文献   

18.
由于电气化铁路、以接地为回路的输电系统等的客观存在,不可避免地造成杂散电流的产生,并使埋地管道因杂散电流而产生腐蚀。杂散电流具有强度高、危害大,范围广、随机性强等的特点,文章介绍了对直流杂散电流腐蚀的控制,提出了最大限度地减少干扰泄漏电流、符合安全距离、增加回路电阻、排流保护和其他保护等措施;并对在强电线路、输油管道上、油库等交流杂散电流腐蚀的防护方面提出了数种可采取的保护措施。  相似文献   

19.
静态直流杂散电流会对埋地金属管道造成严重干扰腐蚀。为了研究管道外加电流阴极保护系统产生的杂散电流对管道的干扰影响,使用仿真软件COMSOL Multiphysics基于边界元法建立了由阴极保护管道、干扰管道和辅助阳极组成的干扰模型,研究了两条管道的交叉角、阳极与交叉点距离、土壤电导率及防腐涂层厚度对干扰管道上的杂散电流干扰影响规律。结果表明:当阳极与交叉点距离小于6km时,干扰管道受杂散电流干扰最为严重;当交叉角小于45°(在15~90°范围)、土壤电导率小于0.01S/m及防腐涂层厚度小于3mm时,干扰管道的杂散电流干扰显著增高,并针对各因素干扰工况下提出合理建议。研究结果可以为管道保护运行和干扰防护提供理论依据与实际参考。  相似文献   

20.
采用管地电位测量、电位梯度测量、杂散电流智能测试仪(SCM)测量等多种方法对某输油管道杂散电流干扰进行检测评价。结果表明:管道受到较严重的直流杂散电流干扰,杂散电流在SH060~SH100管段流入,导致全线阴保关闭后该管段电位偏负,而集中从SH016~SH020管段流出,使得该管段阴极保护电位难以达到正常水平。提出管道杂散电流整治措施与初步方案,为管道的维修、维护与监控提供依据。通过检测杂散电流干扰,分析主要问题并探索解决方案,降低杂散电流对输油管道的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号