首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
超高强TRIP钢的热处理工艺对组织与力学性能的影响   总被引:4,自引:0,他引:4  
研究了抗拉强度超过1000MPa的冷轧TRIP钢的热处理工艺对组织和力学性能的影响,并对其工艺进行了优化。结果表明,超高强TRIP钢在两相区的加热温度升高到820~840℃时,钢的抗拉强度下降而伸长率增加;贝氏体等温温度偏低(380℃)或者偏高(440℃)时,钢的伸长率较低。两相区加热温度对铁素体量的影响不大,降低贝氏体等温温度和延长等温时间都能增加贝氏体量。当贝氏体量高于38%时再增加贝氏体量来提高TRIP钢的强度效果不明显,可通过提高残留奥氏体量及其碳含量来提高力学性能。试验钢优化的热处理工艺:820℃×90s+420℃×240s;优化的组织含量配比:53%铁素体+36%贝氏体+11%奥氏体;优化的力学性能组合:抗拉强度1140MPa和伸长率22%。  相似文献   

2.
采用双相区保温-淬火(IQ)、淬火-配分-贝氏体区等温(QPB)和双相区保温-淬火-配分-贝氏体区等温(IQPB)热处理工艺,研究C、Mn元素对残留奥氏体热稳定和机械稳定性的影响。通过扫描电镜(SEM)、透射电镜(TEM)、X射线衍射仪(XRD)和电子探针(EPMA)对试验钢的组织形貌、残留奥氏体含量及合金元素分布进行表征。结果表明,试验钢在双相区保温过程中C、Mn元素由铁素体向奥氏体扩散,在奥氏体发生富集,使奥氏体的热稳定性增强;在形变过程中由于C、Mn元素的稳定作用使残留奥氏体的机械稳定性提高。试验钢经IQPB工艺处理后,抗拉强度为1098 MPa,伸长率达20%,其强塑积达21 960 MPa·%,与QPB工艺相比,强塑积提高了6840 MPa·%。  相似文献   

3.
研究了等温淬火温度和保温时间对YP460钢的显微组织、物相组成、硬度和冲击性能的影响,优化了等温淬火工艺。结果表明:淬火态、250~300℃和325℃等温淬火态YP460钢的显微组织分别为马氏体+残余奥氏体、下贝氏体+残余奥氏体和上贝氏体+残余奥氏体;当等温温度为250、275和300℃时,随着等温保温时间的延长,洛氏硬度呈现逐渐增加的趋势而冲击韧性呈现逐渐降低的特征;而当等温温度为325℃时,洛氏硬度随着保温时间的延长逐渐降低而冲击韧性逐渐升高;相同等温保温时间下,325℃等温淬火态试样的洛氏硬度和冲击韧性都要低于250~300℃等温淬火态试样;YP460钢适宜的等温淬火工艺为300℃保温4~8 h。  相似文献   

4.
王桂林  曹环军 《铸造技术》2014,(10):2282-2284
研究不同奥氏体化温度和不同等温温度对中碳超高强钢组织与性能的影响。结果表明,随着奥氏体化温度的升高,贝氏体/马氏体复相组织变得粗大,钢的强度上升,塑韧性下降。随着等温温度的升高,钢的抗拉强度呈平缓下降趋势。中碳超高强钢的最佳热处理工艺为880℃奥氏体化保温25 min后,330℃等温保温1.5 min油冷,抗拉强度Rm≥2 060 MPa,断面收缩率ψ≥25.6%。  相似文献   

5.
利用DIL805A膨胀相变仪、Gleeble-3500热模拟试验机、X射线衍射和拉伸试验等研究了TRIP钢贝氏体区(360~440℃)等温处理对组织和性能的影响。结果表明,贝氏体区等温温度影响残余奥氏体体积分数与残奥中碳浓度,是决定TRIP钢力学性能的关键因素。试验钢在800℃×180 s+400℃×300 s处理条件下,可得到17%残余奥氏体,其碳含量为1.5%,此时可获得较佳的相变诱发塑性和较好的强韧性配合,其强塑积可达到31 200 MPa.%。  相似文献   

6.
等温淬火温度对CADI组织及性能的影响   总被引:1,自引:0,他引:1  
针对含一定碳化物等温淬火球墨铸铁(CADI),研究了等温淬火温度对贝氏体相形貌、残余奥氏体量、力学性能及耐磨性能的影响,分析了冲击断裂机理。结果表明,对于铸态组织为75%珠光体+铁素体+10%碳化物试样,经920℃×1.5 h奥氏体化后,在240℃、280℃及320℃进行等温淬火处理2 h,随着等淬温度的提高,贝氏体的形貌由针状变粗至羽毛状,残余奥氏体量增加,硬度减低,冲击韧度提高,相对耐磨性降低。最佳等温淬火温度为280℃,此热处理工艺后组织为贝氏体+22.33%残余奥氏体+10%碳化物,硬度HRC 50.9,冲击韧度32.72 J/cm2,断口呈混合断裂特征,相对耐磨性比320℃时增加11%。  相似文献   

7.
研究了含Mo轴承钢的相变规律及热处理制度对其组织和性能的影响,运用SEM和XRD表征了其显微组织,绘制了动态CCT曲线,测试了其硬度、力学性能和耐磨损性能。结果表明,由于钢中含有Mo,推迟了珠光体组织转变,当冷速≥4 ℃/s时冷却过程只发生马氏体相变;淬火+低温回火后,钢的抗拉强度和维氏硬度分别为1850 MPa和785 HV;而经贝氏体等温淬火后钢的抗拉强度和硬度分别达到2160 MPa和735 HV。淬火+低温回火后残留奥氏体的体积分数约为12.68%,而贝氏体等温淬火后约为3.88%。残留奥氏体含量的降低,有助于提高轴承钢的尺寸稳定性。  相似文献   

8.
张炜  胥洲  高东宏  柳超 《金属热处理》2020,45(2):100-104
研究了淬火回火和等温淬火热处理工艺对51CrV4钢显微组织、力学性能及疲劳性能的影响。结果表明,与淬火回火的传统热处理工艺相比,51CrV4钢等温淬火热处理后显微组织为下贝氏体+马氏体+残留奥氏体的复相组织,抗拉强度、断后伸长率、断裂韧性及疲劳极限分别提高14%、24%、34%和15%,获得高强度、高塑性和高韧性的综合力学性能,以及优良的疲劳性能。  相似文献   

9.
以低碳Si-Mn钢为研究对象,采用DIQPB(两相区形变+奥氏体化+贝氏体区淬火配分)与IQPB(两相区保温+奥氏体化+贝氏体区淬火配分)热处理工艺进行对比试验,研究预先高温形变热处理对残留奥氏体稳定性的提高作用。结果表明:降温过程中,贝氏体铁素体板条成批次、沿横向和纵向不断生成,残留奥氏体位于贝氏体板条间和晶界处,呈薄膜状、块状分布。EBSD和纳米压痕测试表明,一定压应力作用下,纳米压痕周围部分小块状残留奥氏体被保留,试验钢显微硬度位于1.20~1.39 GPa之间。预先高温形变热处理后贝氏体板条细化,残留奥氏体体积分数由10.41%增加到12.47%,残留奥氏体中碳含量由1.41%提高到1.56%。力学性能方面,相较于IQPB工艺,DIQPB工艺处理后试验用钢抗拉强度由1226 MPa提高到1260 MPa,断后伸长率由17.6%提高到22.0%,强塑积可达27 720 MPa·%。  相似文献   

10.
采用QPB和IQPB工艺,研究低碳硅锰贝氏体钢经QPB和IQPB工艺处理后的组织性能。结果表明:试验钢通过两种工艺热处理后均得到粒状贝氏体和板条状贝氏体组织,且经IQPB工艺热处理后得到的板条状贝氏体更多;QPB工艺热处理后残留奥氏体量仅为8.19%,IQPB工艺热处理后残留奥氏体量高达12.08%。两种工艺下测试力学性能,IQPB试样的抗拉强度为900 MPa,伸长率高达27%,QPB试样的抗拉强度为920 MPa,伸长率为22%,经过两相区Mn配分强塑积提高4060 MPa·%。  相似文献   

11.
何涛 《轧钢》2022,39(5):27-33
为明确超级贝氏体组织失稳机制以及探索提高超级贝氏体钢中残余奥氏体热稳定性的方法,通过预相变马氏体工艺,即在等温贝氏体相变前引入预相变马氏体,制备了中碳超级贝氏体钢。对比分析了回火前后中碳超级贝氏体钢显微组织和力学性能的变化,研究了预相变马氏体对中碳超级贝氏体钢中贝氏体组织及残余奥氏体热稳定性的影响。结果表明:预相变马氏体的存在能够细化贝氏体铁素体板条,提高残余奥氏体含量和热稳定性。预相变马氏体的引入及其对超级贝氏体组织的细化作用使得试验钢的屈服强度超过1 000 MPa,伸长率大于20%;300~600 ℃回火1 h后,高碳薄膜状残余奥氏体首先发生分解,形成细小的碳化物,然后贝氏体铁素体板条发生回复和再结晶,形成沿原板条方向的铁素体晶粒;600 ℃回火后试验钢的屈服强度仍与回火前相当,主要是预相变马氏体周围的薄膜状残余奥氏体未发生明显分解,能够抑制相邻贝氏体铁素体板条的回复。  相似文献   

12.
分析了淬火配分处理对锻态Fe-0.2C-9Mn-3.5Al钢显微组织及力学行为的影响。结果表明,热处理态试验钢主要由块状δ-铁素体、马氏体和板条状残留奥氏体等多相构成;残留奥氏体的体积分数随等温淬火温度升高而增大,在310 ℃时达到峰值;310 ℃等温淬火后在400 ℃配分3 min时可以获得较优的综合力学性能,抗拉强度和断后伸长率分别为1175 MPa和21.50%,强塑积达到25.26 GPa·%;应力-应变曲线中存在着明显的“锯齿”状起伏,可能与亚稳态的残留奥氏体集中转变为马氏体有关。  相似文献   

13.
研究了锻造变形量与热处理工艺对一种新型耐磨钢显微组织、硬度和耐磨性的影响,并用彩色金相法定量分析了钢中马氏体+残留奥氏体含量。结果表明:不同变形量下耐磨钢组织均为贝马复合相,贝氏体板条厚度由30%变形量的524 nm降低到70%变形量的292 nm,马氏体+残留奥氏体体积分数由25.4%增加至41.1%;与直接进行260 ℃等温转变时相比,先在Ms点以上的330 ℃保温5 min,再进行260 ℃等温转变时的贝氏体板条厚度减少了357.2 nm,磨损量降低了0.02 g,且平均摩擦因数由0.311降至0.212。  相似文献   

14.
研究了两相区加热(奥氏体化)对低碳Si-Mn系TRIP钢组织和性能的影响。试验用钢分别经750℃、780℃、810℃、840℃加热,保温50 min,随后迅速将试样放入420℃的盐浴炉中等温1 h,再油冷至室温,结果得到贝氏体、铁素体、残留奥氏体的三相组织。通过拉伸试验,测得加热温度为810℃时,钢的综合性能Rm×A5达到最大值18 590 MPa.%,断后伸长率也达到最大值22%。在该温度奥氏体化的钢硬度和冲击韧度也达到了较高值。  相似文献   

15.
利用光学显微镜、拉伸试验机、扫描电镜、XRD和EBSD等手段对22MnB5钢的微观组织及力学性能进行了表征,并重点分析了一步法Q&P工艺处理后的22MnB5钢中残留奥氏体含量及残留奥氏体中碳含量与力学性能的关系。结果表明:采用一步法Q&P工艺,可以获得抗拉强度超过1400 MPa,伸长率超过15%的超高强度22MnB5钢板。随着淬火温度从240 ℃升高至300 ℃,22MnB5钢的组织由马氏体转变为马氏体+残留奥氏体复相组织,试样中的残留奥氏体含量逐渐增加。相同配分温度延长配分时间,残留奥氏体含量呈现先增加后降低趋势。不同热处理工艺下残留奥氏体中的平均碳含量为1.49wt%。采用一步法Q&P热处理工艺可以使残留奥氏体中富集碳,提高残留奥氏体稳定性,强塑积可以达到22.14 GPa·%。  相似文献   

16.
低碳Si-Mn系TRIP钢的热处理工艺对组织的影响   总被引:15,自引:2,他引:15  
低碳Si-Mn系TRIP钢有着复杂的显微组织,主要由多边形铁素体(F)+无碳贝氏体(B)+残留奥氏体(AR)组成。本试验采用了彩色金相法,并结合X-ray衍射、SEM和TEM等手段研究了低碳Si-Mn系TRIP钢显微组织与工艺的关系,发现随着两相区退火温度的升高,最终显微组织中铁素体基体体积分数变小,并且贝氏体量增多,残留奥氏体的稳定性呈起伏式变化;在贝氏体转变区的等温温度过高或过低,均使最终显微组织中残留奥氏体体积分数减少;在贝氏体转变区等温时,所形成贝氏体表现出粒状的特征。  相似文献   

17.
为了缩短贝氏体转变时间并减少生产成本,设计并冶炼了一种新的贝氏体钢种,在Gleebe-1500热模拟实验机上测定其热膨胀曲线,结合显微组织图绘制了实验钢的CCT曲线。根据CCT曲线进行低温等温转变实验,对热处理试样进行拉伸试验,获得了实验钢低温转变后的力学性能。通过TEM观察发现低温转变的实验钢是由亚纳米级的超细贝氏体、马氏体等组成的一种超细贝氏体钢。340℃×2 h的低温等温转变,实验钢的抗拉强度达到1470 MPa,伸长率为15%。  相似文献   

18.
In the present study, a quenching treatment prior to two-stage heat treatment was conducted on a Fe–0.28 C–1.55 Mn–2.06 Al transformation-induced plasticity steel to tailor the final microstructure. Compared with the microstructure of the ferrite, bainite and blocky retained austenite obtained by conventional two-stage heat treatment, the microstructure subjected to quenching plus two-stage heat treatment was composed of the ferrite, lath bainite and film-like retained austenite. The corresponding tensile behavior and mechanical stability of retained austenite were investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The results show that the mechanical stability of blocky retained austenite grains is lower and most of them transform to martensite during the tensile deformation, which leads to higher ultimate tensile strength and instantaneous work hardening exponent. Film-like retained austenite has relatively higher stability, which could cause sustained work hardening and high ductility as well as product of strength and elongation.  相似文献   

19.
Cold-rolled and annealed ultra-high strength sheet steels with good ductility accompanied by TRIP of retained austenite have received considerable attention in recent years. This paper discusses the effect of silicon content and annealing temperature on the formation of retained austenite and the mechanical properties in Fe-0.34%C-1.7% Mn steels whose structure consists of ferrite, bainite and retained austenite. Silicon inhibited the cementite formation in bainite during isothermal holding and partitioned carbon from bainite to austenite, resulting in an increase in retained austenite content. When the silicon content was increased to 1.0 wt.% or higher, the amount of retained austenite markedly increased leading to good mechanical properties. 0.34%C-1.03%Si-1.7%Mn steel showed a high tensile strength of 1,030 MPa and a total elongation of 34.5% when annealed at 780°C for 5 min followed by isothermal holding at 400°C for 5 min. In this case, the amount of retained austenite was about 25%. The variation in tensile strength-elongation combination had good correlation with that in the amount of retained austenite with both annealing temperature and silicon content. The most retained austenite was obtained in the steel annealed at just above AC1 temperature. The annealing temperature which gives the most retained austenite was decreased with decreasing the silicon content.  相似文献   

20.
对贝氏体钢轨钢不同工艺回火后的组织和性能进行研究.结果表明,350℃回火4h及以上,贝氏体钢轨屈服强度大于1000 MPa,抗拉强度大于1200 MPa,伸长率和断面收缩率分别大于15%和45%,室温冲击功大于150 J;在450~550℃回火时,出现明显的回火脆性.金相显微镜和透射电子显微镜观察表明,贝氏体轨钢以粒状贝氏体组织为主,残留奥氏体在板条间以M-A岛状形式分布.不同回火温度及3%拉伸变形后试验贝氏体轨钢残留奥氏体的测定结果表明,350℃回火时的残留奥氏体机械稳定性最好.贝氏体钢轨的强韧性随回火温度的变化与残留奥氏体的机械稳定性密切相关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号