首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 99 毫秒
1.
裴晓东  钱有军 《金属矿山》2013,42(12):57-60
印度尼西亚某低品位红土镍矿含镍1.57%、含铁21.67%,其中镍主要以硅酸镍形式存在。为将该矿石的镍含量提高到6%以上以符合印度尼西亚政府对出口红土镍矿的规定,以硫酸钠和碳酸钠为助熔剂,进行了还原焙烧-弱磁选试验。试验结果表明,当煤用量为25%、硫酸钠+碳酸钠的配比和总用量分别为3∶1和20%、焙烧温度为1 200 ℃、焙烧时间为60 min、磨矿细度为-0.074 mm占85%、磁场强度为96 kA/m时,可获得产率为22.06%、镍品位为6.05%、镍回收率为85.03%、铁品位为65.74%、铁回收率为66.92%的镍铁精矿,其镍品位超过印度尼西亚出口红土镍矿的品位下限。  相似文献   

2.
还原焙烧—磁选工艺可有效提取红土镍矿中的镍和铁等有价金属,由于影响红土镍矿还原焙烧—磁选效果的因素较多,导致工业生产中的选矿指标不稳定。为进一步提高还原焙烧—磁选工艺处理红土镍矿的效果,本研究以青海某镍矿为原料,采用正交试验与BP神经网络相结合的方法,对还原焙烧—磁选工艺的还原剂用量、焙烧温度、料层厚度、焙烧时间及磁场强度等因素进行了优化。结果表明:通过BP神经网络模型优化后的试验条件为还原剂用量9.5%、焙烧温度1 070℃、料层厚度10.0 mm、焙烧时间65 min及磁场强度2.5 kA·m-1,在此条件下可获得产率为30.29%的镍粗精矿,比采用正交试验最优因素组合条件所得的镍粗精矿产率提高了2.83%。   相似文献   

3.
为进一步探究还原焙烧—弱磁选富集工艺处理红土镍矿的试验效果及可行性,在实验室小型试验基础上,在44 m推板烧结窑上进行了还原焙烧半工业试验。结果表明,焙烧温度为1 150℃左右,焙烧时间为90 min,煤配比为20%,助溶剂组分元明粉、苏打、硼砂配比为6∶2∶1、用量为22.5%,还原产品磨矿细度为-0.074 mm占85%,弱磁选磁场强度为80 kA/m情况下,可获得含Ni 6.39%、回收率73.84%,含Fe 77.72%、回收率64.24%的镍铁精矿。该镍铁精矿可作为产品直接出售,也可进一步精炼为高品位镍铁合金,实现了该腐殖型红土镍矿的有效利用。  相似文献   

4.
基于煤基直接还原工艺, 采用灰熔点测定仪和相图分析对红土镍矿的软熔性能进行了研究, 结果表明: 随着CaO添加量的逐渐提高, 红土镍矿的熔化温度和流动温度呈现先降低后升高的趋势, 当CaO添加量为10%时, 红土镍矿的熔化温度和流动温度最低, 分别为1 315 ℃和1 335 ℃。结合扫描电子显微镜和能谱分析仪, 对不同温度下反应后的球团样品进行了分析, 研究了红土镍矿含碳球团的还原过程。  相似文献   

5.
低品质红土镍矿选择性还原-磁选制备镍铁合金   总被引:1,自引:0,他引:1  
杨超 《矿冶工程》2021,41(2):99-101
以TFe品位21.70%、Ni品位1.92%的低品位红土镍矿为原料,采用回转窑选择性还原-磁选工艺制备镍铁合金,研究了还原温度、磨矿方式以及磁场强度对镍铁回收率的影响。结果表明,适宜的工艺参数为: 还原温度1150 ℃、细磨(磨矿时间3 min)、磁场强度150 mT,此条件下所得镍铁合金中镍品位7.26%、镍回收率96.06%、铁品位85.15%、铁回收率89.23%,实现了低品位红土镍矿中铁、镍高效回收利用,并且镍铁中碳、磷和硫含量均在要求范围内。  相似文献   

6.
某高镁低铁镍型红土镍矿石Fe、Ni品位分别为17.68%和1.62%,MgO含量为19.06%,镍主要以类质同象形式取代Fe、Mg存在于铁氧化物和硅酸盐矿物中,占比分别为39.65%和54.72%。为了确定该矿石的高效开发利用工艺,通过小型基础试验确定还原焙烧和磨选工艺参数,再在中径8 m的转底炉上进行还原焙烧中试试验。结果表明:试样采用煤基直接还原-水淬冷却-2阶段磨矿弱磁选工艺处理,在红土镍矿、石灰石、TN的质量配比为100∶10∶3,按碳氧物质的量之比1.2配入无烟煤,还原焙烧温度为1 280 ℃,还原焙烧时间为40 min,还原焙烧熟料水淬产品一段磨矿细度为-0.074 mm占83.31%,一段弱磁选磁场强度为190.98 kA/m,二段磨矿细度为-0.074 mm占97.43%,二段弱磁选磁场强度为127.32 kA/m的情况下,获得了Ni品位为5.63%、Fe品位为60.39%、Ni回收率为80.83%、Fe回收率为75.14%的镍铁粉;中径8 m的转底炉中试产品经磨选,获得了Ni品位为5.26%、Fe品位为59.20%、Ni回收率为80.84%、Fe回收率为74.98%的镍铁粉。该研究成果可作为工程化的依据,也为同类型红土镍矿石资源的高效开发利用提供了技术借鉴。  相似文献   

7.
还原焙烧—磁选是处理镁质红土镍矿的常用工艺,为考察还原焙烧—磁选过程中各因素对镍分选效果的影响规律,研究以青海某低品位镁质红土镍矿为原料,采用正交试验方法进行试验,并对正交试验结果进行了极差和方差分析。结果表明,料层厚度和磁场强度是影响还原焙烧—磁选镍粗精矿产率及回收率的显著因素,而焙烧温度、焙烧时间以及还原剂用量是影响还原焙烧—磁选镍粗精矿产率及回收率的不显著因素。还原焙烧—磁选分选镍的粗选作业最优条件为:还原剂用量为5%、还原温度为800℃、料层厚度为10mm、还原时间为30 min、磁场强度为200 k A/m,在此条件下,可获得产率22.88%、回收率38.99%的镍粗精矿。研究对镁质红土镍矿现场生产具有重要的参考意义。  相似文献   

8.
以某菱铁矿石为原料,采用直接还原-弱磁选工艺,研究了焙烧温度、还原时间、碳铁质量比对还原焙烧产品金属化率的影响,以及磨矿细度、磁场强度对弱磁选指标的影响。结果表明:在还原焙烧温度为1 050 ℃,还原时间为100 min,碳铁质量比为2.3的条件下,得到铁金属化率为90.88%的还原焙烧产品;还原焙烧产品在磨矿细度为-0.037 mm占79.60%,磁场强度为79.62 kA/m下,得到铁品位为92.40%,铁回收率为96.60%的还原铁粉,可直接作为炼钢原料。  相似文献   

9.
以含Ni 1.49%, Fe 34.69%的红土镍矿为研究对象, 采用煤基直接还原法选择性还原镍铁矿物, 研究并分析了焙烧过程中还原剂和添加剂种类及用量、焙烧温度以及焙烧时间对镍铁选择性还原的影响规律。结果表明: 以宁夏烟煤为还原剂, NCS为添加剂, 1 200 ℃焙烧50 min, 磁选得到镍铁产品中含镍9.51%, 镍的回收率为84.04%, 镍铁回收率差为54.49%。通过X射线衍射(XRD)、扫描电镜(SEM)及X射线能谱分析(EDS)等测试手段分析了磁选镍铁产品中镍铁的存在形式, 结果表明: 红土镍矿直接还原过程中铁矿物大部分被还原成浮士体, 仅有少部分铁矿物被还原成金属铁, 并与镍矿物还原金属镍形成铁纹石和镍纹石, 实现了红土镍矿中镍铁的选择性还原。  相似文献   

10.
以褐煤、烟煤、无烟煤和兰炭作为还原剂, 对低品位红土镍矿进行了直接还原焙烧-磁选实验研究。结果表明, 还原剂种类、粒度和用量对还原过程有较大影响, 其中褐煤作为还原剂时还原效果最好。最佳实验条件为: 红土镍矿原料粒度-0.075 mm, 还原剂(褐煤)粒度为-0.25 mm、用量4%, 焙烧温度1 200 ℃, 焙烧时间90 min, 焙烧后焙砂磨细至-0.05 mm, 在磁场强度0.3 T下粗选再在0.1 T下精选, 可得到镍品位3.2%、镍回收率82%、铁品位65%、铁回收率69%的镍铁精矿。  相似文献   

11.
湖南祁东某贫铁矿石铁品位为31.77%,矿石中铁主要以赤铁矿形式存在,赤铁矿多呈微细粒嵌布。为开发利用该矿石,采用还原焙烧—弱磁选工艺进行了选矿试验。结果表明,制备还原球团时,添加内配煤可以改善小球内部的还原气氛,外配煤与内配煤协同使用,可使小球还原更加充分、均匀;在添加剂用量为3%、m(C)∶m(Fe)为0.3时制成直径3~5 mm的小球,小球干燥后在外配煤用量为20%、还原温度为960℃、还原时间为35 min时进行焙烧可以得到铁金属化率为86.15%的焙烧产品,焙烧产品在磨矿细度为-0.045 mm占95%、磁场强度为183 k A/m条件下弱磁选,获得了铁品位为80.23%、Si O2含量为9.48%、铁回收率为80.78%的铁精矿,实现了该铁矿资源的高效回收。  相似文献   

12.
红土镍矿深度还原-磁选试验研究   总被引:2,自引:0,他引:2  
采用深度还原-弱磁-强磁工艺对低品位红土镍矿进行了开发利用研究,重点研究了深度还原合适的温度、还原时间、配碳系数、料层厚度、强磁精矿返回量等参数。研究表明,适宜的深度还原条件为:还原温度1 275 ℃、还原时间50 min、配碳系数2.5、料层厚度25 mm、强磁精矿返回量占原矿量的25%,还原产物经弱磁选(场强为130 kA/m),可获得镍、铁品位分别为6.96%、34.74%,镍、铁总回收率分别为94.06%、80.44%的优质镍铁精矿产品;同时富含大量细小镍铁颗粒的强磁精矿是红土镍矿深度还原的优质成核剂。  相似文献   

13.
云南某铁矿石为混合型铁矿石,由于铁矿物嵌布粒度微细而难以采用常规选矿方法有效选别。为此,对该矿石进行了煤基直接还原-弱磁选试验,结果表明,将原矿与作为还原剂的云南某褐煤和作为助熔剂的CaO按100∶20∶10的质量比混合,在1 200 ℃的温度下直接还原焙烧50 min,焙烧矿在一段和二段磨矿细度分别为-325目占81.34%和-325目占92.41%、一段和二段弱磁选场强分别为187.10和143.31 kA/m的条件下进行两段磨矿-弱磁选,可获得铁品位为91.20%、铁回收率为87.05%的直接还原铁精矿,从而为该难选铁矿石的开发利用提供了技术支持。  相似文献   

14.
惠民高磷铁矿石还原焙烧同步脱磷工艺研究   总被引:3,自引:0,他引:3  
何洋  王化军 《金属矿山》2011,40(3):60-62
对云南惠民地区成分复杂、嵌布粒度细、磷含量高的铁矿石进行了还原焙烧同步脱磷工艺的研究,确定了合适的还原焙烧温度和时间、还原剂和脱磷剂的添加量。试验结果表明,在煤与矿样质量比为2∶5,脱磷剂与矿的质量比为1∶2,还原时间为50 min,还原温度为950 ℃条件下的还原产物,经过磨矿-弱磁选,可获得铁品位为93.46%,磷含量为0.05%的铁精矿产品。  相似文献   

15.
新疆某镜铁矿矿石TFe含量为35.20%,CaO含量为30.64%;铁矿物主要为镜铁矿,脉石矿物主要为方解石和石英。矿石中镜铁矿嵌布粒度微细,属于难选铁矿石。为考察矿石磁化焙烧过程物相转变规律,进行了焙烧温度、焙烧时间和配煤比对其磁化焙烧效果、铁物相转变过程的影响规律试验。结果表明:在配煤比为12%、焙烧温度为800 ℃、焙烧时间为75 min条件下还原焙烧后,焙烧产品磨细至-0.074 mm占90%,在磁场强度为120 kA/m条件下弱磁选,可获得铁品位为65.95%、回收率77.70%的指标。焙烧温度对镜铁矿磁化焙烧过程影响显著。焙烧温度低于800 ℃时镜铁矿磁化焙烧转变为Fe3O4,焙烧温度为800 ℃时,焙烧产品Fe3O4含量最高;焙烧温度高于800 ℃时,部分Fe3O4又被还原为FeO,产生过还原现象;焙烧温度为900 ℃时,焙烧产品FeO含量最高;焙烧温度达到1 000 ℃时部分FeO被还原成金属Fe。此过程与磁选结果的变化规律相符。另外,焙烧温度达到900 ℃时,部分Fe2O3与CaO反应,生成了2CaO·Fe2O3,不能通过弱磁选回收。试验结果为该镜铁矿资源的合理利用提供了技术参考。  相似文献   

16.
The reduction of nickel from low-grade nickel laterite ore using a solid-state deoxidisation method was studied. The effects of temperature, time, reductant type and CaO content on the conversion percentage of the total nickel to metallic nickel (αNi) in the nickel laterite ore reduction process were investigated. The results showed that αNi was strongly influenced by the reaction temperature in both gas–solid and solid–solid reduction processes, and a higher temperature was more favourable for nickel reduction. Because the reduction mechanism of nickel laterite ore (NiO + CO → CO2 + Ni) is indirect, a higher αNi (>80%) can be obtained by increasing the CO and anthracite content. In the gas–solid reduction process, a longer reaction time favoured nickel reduction, and the conversion percentage decreased when a gaseous reductant was used at 850 °C because of phase transformation. In the solid–solid reduction process, the conversion percentage of the total nickel to metallic nickel first increased and then decreased with increasing reduction time and CaO content. In both reduction processes, taenite was found by XRD in the reduced ore because of iron oxide reduction and metallic nickel formation. SEM revealed that the nickel laterite ore was transformed from large granular and sandwich structures to small granular and flocculent structures during the reduction process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号