首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 269 毫秒
1.
Fuzzy logic control frequently exhibits superior performance to classical linear controllers even for ‘hard’, mathematically well defined plants, as described in this paper. The case-study of a highly nonlinear exothermic continuous stirred tank reactor, which poses a multivariable control problem with two interacting loops and open-loop instability, is used. The behaviour of the fuzzy logic controller is compared with that of a PID controller. A smooth, easily tuneable gain-schedule is designed to handle offset-like problems with a fuzzy controller. It is analytically shown that such a gain-schedule is the simpler, intuitive equivalent of a manipulation of the corresponding fuzzy membership functions. The fuzzy controller structure chosen is a parsimonious one, with the choice of Gaussian bell-shaped membership functions generating a smooth input/output surface with nontrivial inferencing spanning the entire input space. This provides a clear, non-heuristic reason to select Gaussian over triangular shapes for membership functions. The gain-scheduled fuzzy controller shows excellent control performance, significantly outperforming the PID controllers in both servo and regulatory modes. The disturbance rejection behaviour of the modified fuzzy controller is observed to be particularly good.  相似文献   

2.
An ART-based fuzzy adaptive learning control network   总被引:4,自引:0,他引:4  
This paper addresses the structure and an associated online learning algorithm of a feedforward multilayer neural net for realizing the basic elements and functions of a fuzzy controller. The proposed fuzzy adaptive learning control network (FALCON) can be contrasted with traditional fuzzy control systems in network structure and learning ability. An online structure/parameter learning algorithm, FALCON-ART, is proposed for constructing FALCON dynamically. It combines backpropagation for parameter learning and fuzzy ART for structure learning. FALCON-ART partitions the input state space and output control space using irregular fuzzy hyperboxes according to the data distribution. In many existing fuzzy or neural fuzzy control systems, the input and output spaces are always partitioned into “grids”. As the number of variables increases, the number of partitioned grids grows combinatorially. To avoid this problem in some complex systems, FALCON-ART partitions the I/O spaces flexibly based on data distribution. It can create and train FALCON in a highly autonomous way. In its initial form, there is no membership function, fuzzy partition, and fuzzy logic rule. They are created and begin to grow as the first training pattern arrives. Thus, the users need not give it any a priori knowledge or initial information. FALCON-ART can online partition the I/O spaces, tune membership functions, find proper fuzzy logic rules, and annihilate redundant rules dynamically upon receiving online data  相似文献   

3.
In this paper, a novel fuzzy logic controller called linguistic-hedge fuzzy logic controller in a mixed-signal circuit design is discussed. The linguistic-hedge fuzzy logic controller has the following advantages: 1) it needs only three simple-shape membership functions for characterizing each variable prior to the linguistic-hedge modifications; 2) it is sufficient to adopt nine rules for inference; 3) the rules are developed intuitively without heavy dependence on the endeavors of experts; 4) it performs better than conventional fuzzy logic controllers; and 5) it can be realized with a lower design complexity and a smaller hardware overhead as compared with the controllers that required more than nine rules. In this implementation, a current-mode approach is adopted in designing the signal processing portions to simplify the circuit complexity; digital circuits are adopted to implement the programmable units. This design was fabricated with a TSMC 0.35 /spl mu/m single-polysilicon-quadruple-metal CMOS process. In this chip, the LHFLC processes two input variables and one output variable. Each variable is specified using three membership functions. Nine inference rules, scheduled in a rule table with a dimension of 3 /spl times/ 3, define the relationship implications between these three variables. Under a supply voltage of 3.3 V, the measurement results show that the measured control surface and the control goal are consistent. The speed of inference operation goes up to 0.5M FLIPS that is fast enough for the control application of the cart-pole balance system. The cart-pole balance system experimental results show that this chip works with nine inference rules. Furthermore, by performing some off-chip modifications, such as shifting and scaling on the input signals and output signal of this design, according to the specifications defined by the controlled plants, this design is suitable for many control applications.  相似文献   

4.
通过分析对模糊控制器优化的原理,提出一种新的优化设计方法,通过引入等比因子,实现用三个参数调整输入、输出语言变量的隶属函数,再通过遗传算法寻优包括量化和比例因子在内的这些参数,使得性能指标最大,从而使设计出的模糊控制器性能更优。仿真结果表明,本文方法简单,有效。  相似文献   

5.
Conventional (type-1) fuzzy logic controllers have been commonly used in various power converter applications. Generally, in these controllers, the experience and knowledge of human experts are needed to decide parameters associated with the rule base and membership functions. The rule base and the membership function parameters may often mean different things to different experts. This may cause rule uncertainty problems. Consequently, the performance of the controlled system, which is controlled with type-1 fuzzy logic controller, is undesirably affected. In this study, a type-2 fuzzy logic controller is proposed for the control of buck and boost DC–DC converters. To examine and analysis the effects of the proposed controller on the system performance, both converters are also controlled using the PI controller and conventional fuzzy logic controller. The settling time, the overshoot, the steady state error and the transient response of the converters under the load and input voltage changes are used as the performance criteria for the evaluation of the controller performance. Simulation results show that buck and boost converters controlled by type-2 fuzzy logic controller have better performance than the buck and boost converters controlled by type-1 fuzzy logic controller and PI controller.  相似文献   

6.
In this paper, a genetic algorithm (GA) based optimal fuzzy controller design is proposed. The design procedure is accomplished by establishing an index function as the consequent part of the fuzzy control rule. The inputs of the controller, after scaling, are utilized by the index function for computing the output linguistic value. This linguistic value can then be used to map the suitable fuzzy control actions. This proposed novel fuzzy control rule has crisp input and fuzzified output characteristics. The index function plays a role in mapping the desired fuzzy sets for defuzzification resulting in a controlled hypersurface in the linguistic space formed by the input fuzzy variables. Two types of index functions, both linear and nonlinear, are introduced for controlling systems with different degrees of nonlinearity. The parameters of the index function are obtained by applying a simple GA with a suitable fitness function. Various controlled systems result in various parameter sets depending on their dynamics. Under the acquired optimal parameter set the optimal index function can be used to generate the desired control actions. Several simulation examples are given to verify the performance of the proposed GA-based fuzzy controller.  相似文献   

7.
为了提高二级倒立摆系统实时控制的响应速度和稳定性,在设计Mamdani型模糊推理规则控制器控制倒立摆系统稳定的基础上,设计了一种更有效率的基于Sugeno型模糊推理规则的模糊神经网络控制器.该控制器使用BP神经网络和最小二乘法的混合算法进行参数训练.能够准确归纳输入输出量的模糊隶属度函数和模糊逻辑规则.通过与Mamdani型控制器的仿真对比及实际控制实验结果,表明该Sugeno型模糊神经网络控制器时二级倒立摆实验装置的控制具有良好的稳定性、快速性和较高的控制精度.  相似文献   

8.
In this work, a dynamic switching based fuzzy controller combined with spectral method is proposed to control a class of nonlinear distributed parameter systems (DPSs). Spectral method can transform infinite-dimensional DPS into finite ordinary differential equations (ODEs). A dynamic switching based fuzzy controller is constructed to track reference values for the multi-inputs multi-outputs (MIMO) ODEs. Only a traditional fuzzy logic system (FLS) and a rule base are used in the controller, and membership functions (MFs) for different ODEs are adjusted by scaling factors. Analytical models of the dynamic switching based fuzzy controller are deduced to design the scaling factors and analyze stability of the control system. In order to obtain a good control performance, particle swarm optimization (PSO) is adopted to design the scaling factors. Moreover, stability of fuzzy control system is analyzed by using the analytical models, definition of the stability and Lyapunov stability theory. Finally, a nonlinear rod catalytic reaction process is used as an illustrated example for demonstration. The simulation results show that performance of proposed dynamic switching based fuzzy control strategy is better than a multi-variable fuzzy logic controller.  相似文献   

9.
设计了基于遗传算法和模糊逻辑控制的智能飞行控制系统及采用论域自调整的模糊控制器,控制器以角度跟踪误差及其微分信号为输入来控制相应的气动舵面偏转,实现对该姿态的跟踪控制。文中给出了控制器输入输出的隶属函数,设计了相应的规则库。并在此基础上进一步利用遗传算法对模糊控制器进行优化设计,给出了遗传算法各个参数的选择原则。仿真结果表明,基于遗传算法和模糊逻辑的智能飞控系统具有良好的控制效果。  相似文献   

10.
为了提高三级倒立摆系统控制的响应速度和稳定性,在设计Mamdani型摸糊推理规则控制器控制倒立摆系统稳定的基础上,设计了一种更有效率的基于Sugeno型模糊推理规则的模糊神经网络控制器。该控制器使用BP神经网络和最小二乘法的混合算法进行参数训练,能够准确归纳输入输出量的模糊隶属度函数和模糊逻辑规则。通过与Mamdani型控制器的仿真对比,表明该Sugeno型模糊神经网络控制器对三级倒立摆系统的控制具有良好的稳定性和快速性,以及较高的控制精度。  相似文献   

11.
UC轧机中间辊弯辊控制回路的数学模型具有很强的时变性和不确定性,为实现其精确控制,设计了一种基于遗传算法的模糊控制器并将其应用于该控制回路中。系统利用遗传算法来优化模糊控制器的隶属函数及量化因子和比例因子的初值,并且根据模糊控制查询表的输出来在线调整量化因子和比例因子。仿真结果表明,用该方法设计的模糊控制器具有一定的自适应能力,将该控制器应用于UC轧机中间辊弯辊控制回路可以使二次型板形缺陷得到快速有效的控制,具有良好的控制性能。  相似文献   

12.
三级倒立摆的自适应神经模糊控制   总被引:1,自引:0,他引:1  
在三级倒立摆(TIP)系统中, 应用神经网络与模糊控制相结合的自适应神经模糊推理系统(adaptive neuralfuzzy inference system), 根据样本数据调整隶属函数和控制规则参数, 使得训练后ANFIS控制器很好地模拟期望的输入输出数据. 仿真结果表明所设计的ANFIS控制器对三级倒立摆系统的稳定控制是可行的. 与LQR控制相比, 基于ANFIS控制的倒立摆系统具有良好的动态性能和抗干扰性能.  相似文献   

13.
A Genetic Algorithms (GAs) based method is presented in this paper for concurrent design of rule sets and membership functions for a fuzzy logic controllers to be used in spacecraft proximity operations. The heuristic nature of fuzzy logic makes GAs a natural candidate for logic design in which both rule sets and membership functions are optimized simultaneously. The employment of GAs natural genetic operations provides a means to search in a complex system space that is difficult to described mathematically. A one-dimensional controller for spacecraft proximity operations is implemented for examination in detail. The expension of the algorithm for a 6 DOP controller is discussed.  相似文献   

14.
This paper proposes an on-line self-organizing fuzzy logic controller (FLC) design applied to the control of vibrations in flexible structures containing distributed piezoelectric actuator patches. In this methodology, the fuzzy rules are generated using the history of input/output (I/O) pairs without using any plant model. The generated rules are stored in the fuzzy rule space and updated on-line by a self-organizing procedure. The validity of the proposed fuzzy logic control has been demonstrated experimentally in a steel cantilever test beam and a set of experimental tests are made in the system to verify the efficiency of the on-line self-organizing fuzzy controller.  相似文献   

15.
The paper deals with the optimal adjustment of input scaling factors for fuzzy controllers (FCs). The method is based on the assumption that in the stationary case an optimally adjusted input scaling factor meets a specific statistical input output dependence. A measure for the strength of statistical dependence is the correlation function and the correlation coefficient, respectively. Without loss of generality, the adjustment of input scaling factors using correlation functions is pointed out by means of a single input-single output (SISO)-system. First, the paper deals with the so-called equivalent gain which is closely connected to the cross-correlation of the controller input and the defuzzified controller output. Next, it considers the computation of correlation functions and their representation inside the FC. The paper concludes with an example of a system of fuzzy rules controlling a redundant robot manipulator  相似文献   

16.
In this paper, a fuzzy logic controller (FLC) based variable structure control (VSC) with guaranteed stability for multivariable systems is presented. It is aimed at obtaining an improved performance of nonlinear multivariable systems. The main contribution of this work is firstly developing a generic matrix formulation of the FLC-VSC algorithm for nonlinear multivariable systems, with a special attention to non-zero final state. Secondly, ensuring the global stability of the controlled system. The multivariable nonlinear system is represented by T-S fuzzy model. The identification of the T-S model parameters has been improved using the well known weighting parameters approach to optimize local and global approximation and modeling capability of T-S fuzzy model. The main problem encountered is that T-S identification method cannot be applied when the membership functions (MFs) are overlapped by pairs. This in turn restricts the application of the T-S method because this type of membership function has been widely used in control applications. In order to overcome the chattering problem a switching function is added as an additional fuzzy variable and will be introduced in the premise part of the fuzzy rules together with the state variables. A two-link robot system and a mixing thermal system are chosen to evaluate the robustness, effectiveness, accuracy and remarkable performance of proposed FLC-VSC method.  相似文献   

17.
In this paper, we propose a novel fuzzy logic controller, called linguistic hedge fuzzy logic controller, to simplify the membership function constructions and the rule developments. The design methodology of linguistic hedge fuzzy logic controller is a hybrid model based on the concepts of the linguistic hedges and the genetic algorithms. The linguistic hedge operators are used to adjust the shape of the system membership functions dynamically, and ran speed up the control result to fit the system demand. The genetic algorithms are adopted to search the optimal linguistic hedge combination in the linguistic hedge module, According to the proposed methodology, the linguistic hedge fuzzy logic controller has the following advantages: 1) it needs only the simple-shape membership functions rather than the carefully designed ones for characterizing the related variables; 2) it is sufficient to adopt a fewer number of rules for inference; 3) the rules are developed intuitionally without heavily depending on the endeavor of experts; 4) the linguistic hedge module associated with the genetic algorithm enables it to be adaptive; 5) it performs better than the conventional fuzzy logic controllers do; and 6) it can be realized with low design complexity and small hardware overhead. Furthermore, the proposed approach has been applied to design three well-known nonlinear systems. The simulation and experimental results demonstrate the effectiveness of this design.  相似文献   

18.
Development of a systematic methodology of fuzzy logic modeling   总被引:4,自引:0,他引:4  
This paper proposes a systematic methodology of fuzzy logic modeling for complex system modeling. It has a unified parameterized reasoning formulation, an improved fuzzy clustering algorithm, and an efficient strategy of selecting significant system inputs and their membership functions. The reasoning mechanism introduces 4 parameters whose variation provides a continuous range of inference operation. As a result, we are no longer restricted to standard extremes in any step of reasoning. The fuzzy model itself can then adjust the reasoning process by optimizing the inference parameters based on input-output data. The fuzzy rules are generated through fuzzy c-means (FCM) clustering. Major bottlenecks are addressed and analytical solutions are suggested. We also address the classification process to extend the derived fuzzy partition to the entire output space. In order to select suitable input variables among a finite number of candidates (unlike traditional approaches) we suggest a new strategy through which dominant input parameters are assigned in one step and no iteration process is required. Furthermore, a clustering technique called fuzzy fine clustering is introduced to assign the input membership functions. In order to evaluate the proposed methodology, two examples-a nonlinear function and a gas furnace dynamic procedure-are investigated in detail. The significant improvement of the model is concluded compared to other fuzzy modeling approaches  相似文献   

19.
一种改进的三级倒立摆变论域模糊控制器设计   总被引:3,自引:1,他引:2  
在传统变论域模糊控制系统中, 论域随着输入的变化实时改变, 论域的反复调整降低了控制的实时性, 同时伸缩因子的函数结构和参数也不易确定. 基于上述问题本文设计了基于改进型变论域算法的三级倒立摆模糊控制器: 首先提出了相对变论域控制思想, 然后采用模糊逻辑推理器构造了伸缩因子, 实时调整输入变量, 从而相对性地改变论域大小, 避免了传统伸缩因子的函数结构和参数不易确定的问题, 并根据系统闭环响应曲线设计了控制 器输出调整因子. 最后采用极点配置方法对状态变量进行综合, 避免了规则爆炸问题. 三级倒立摆的仿真结果表明了该方法具有较好的控制效果.  相似文献   

20.
This paper examines the applicability of genetic algorithms (GA's) in the simultaneous design of membership functions and rule sets for fuzzy logic controllers. Previous work using genetic algorithms has focused on the development of rule sets or high performance membership functions; however, the interdependence between these two components suggests a simultaneous design procedure would be a more appropriate methodology. When GA's have been used to develop both, it has been done serially, e.g., design the membership functions and then use them in the design of the rule set. This, however, means that the membership functions were optimized for the initial rule set and not the rule set designed subsequently. GA's are fully capable of creating complete fuzzy controllers given the equations of motion of the system, eliminating the need for human input in the design loop. This new method has been applied to two problems, a cart controller and a truck controller. Beyond the development of these controllers, we also examine the design of a robust controller for the cart problem and its ability to overcome faulty rules  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号