首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
抗氧化涂层技术是解决碳/碳复合材料高温抗氧化性的最有效技术途径之一。为了提高材料在1 800℃以上的高温抗氧化性能,首次采用包埋法、涂刷法和等离子喷涂法在碳/碳复合材料表面制备出SiC/MoSi_2/ZrO_2梯度抗氧化涂层体系。采用SEM/EDS、结合力和粗糙度测试对涂层表面及断面形貌进行微观分析,利用等离子风洞对整个涂层体系进行氧化试验。结果表明:基体、过渡层和高温抗氧化层之间结合力良好,高温抗氧化层厚度均匀、结构致密。经等离子风洞氧化600s后,涂层表面温度达到1 850℃,氧化质量失重速率仅为3.15×10~(-6) g/(cm~2·s)。表明SiC/MOSi_2/ZrO_2梯度抗氧化涂层体系在1 800℃以上的高温环境下具有很好的抗氧化性能。  相似文献   

2.
C/C复合材料高温抗氧化涂层的研究现状与展望   总被引:13,自引:0,他引:13  
C/C复合材料在高温下的氧化严重制约了该材料在航空航天领域的推广应用,涂层技术是目前解决该材料高温易氧化的最佳手段.本文综述了C/C复合材料高温抗氧化技术在玻璃涂层、金属涂层、陶瓷涂层和复合涂层等体系方面的研究现状,总结了C/C复合材料高温抗氧化涂层在传统制备工艺的改善以及新方法的开发等方面取得的研究成果,并提出了C/C复合材料高温抗氧化涂层当前研究中存在的问题和今后潜在的发展方向.  相似文献   

3.
为了提高C/C复合材料的高温抗氧化性能,设计了网状的SiC填充高性能的MoSi2和微量的TiSi2涂层。用包埋法制备了C/C复合材料SiC-MoSi2-TiSi2复相陶瓷单层涂层,对制备涂层的化学形成机理进行了分析。结果表明,在选择的实验条件下,制备设计的涂层是完全可行的,实验制备的涂层在1773K有氧环境下具有良好的抗氧化性能。涂层抗氧化性能的提高是因为在高温氧化下涂层表面产生了致密、连续、稳定的玻璃质氧化物。  相似文献   

4.
采用包埋法、超音速等离子喷涂结合化学气相沉积工艺在C/C复合材料表面制备了SiC/ZrB_2-SiC/SiC复合涂层。借助XRD和SEM等测试手段对所制备复合涂层的微观结构进行表征,采用恒温氧化实验及氧乙炔烧蚀实验考察涂层复合材料的高温抗氧化和抗烧蚀性能。结果表明,所制备涂层复合材料在900,1100,1500℃均具有较好的高温抗氧化性能,涂层氧乙炔烧蚀60 s后,质量烧蚀率和线烧蚀率分别为-0.05 mg/s和0.56μm/s。表明所制备的ZrB_2-SiC基复合涂层在为C/C复合材料提供良好的抗烧蚀保护的同时,可对材料提供较宽温度范围的抗氧化保护。  相似文献   

5.
炭/炭(C/C)复合材料高温下易氧化,严重制约了其应用.高温合金涂层技术是解决该问题的有效手段.综述了近几年来C/C复合材料高温抗氧化合金涂层的最新研究进展,介绍了Si-Cr系、Si.Mo系、Sj-Mo-X(W,Ta,Cr)系、Al基以及Ir系舍金涂层的高温抗氧化性能,分析了部分合金涂层失效的原因,提出了C/C复合材料...  相似文献   

6.
为了提高炭/炭(C/C)复合材料的高温抗氧化性能,应用多相反应技术在C/C复合材料表面制备SiC/Mo(Six、Al1-x)2复合涂层。利用扫描电镜、电子能谱、X射线衍射仪等测试手段对涂层材料的微观结构和物相组成进行分析,同时研究涂层C/C复合材料在超音速气流中的抗氧化性能。结果表明,C/C复合材料表面形成的抗氧化涂层显示出明显的双层结构,从外向内分别为Mo(Six、Al1-x)2与SiC的复合层和纯SiC层,同时有少量的Mo4.8Si3C0.6存在于涂层中。在温度为1800K、气体速率1500m/s的超音速气流中氧化冲刷96 s,以及在2550 K和室温下热循环24次的测试条件下,制备的SiC/Mo(Six、Al1-x)2涂层材料均未发生破坏现象。涂层材料优良的抗氧化性能和抗热震性能主要归因于基体C/C复合材料的高强度以及在氧化过程中材料表面形成的连续稳定的SiO2和Al2O3玻璃相。  相似文献   

7.
C/C复合材料SiC/W-Mo-Si抗氧化复合涂层研究   总被引:3,自引:2,他引:1  
为了防止C/C复合材料高温氧化,采用两步包埋法在其表面制备SiC/W-Mo-Si抗氧化复合涂层,研究了促渗剂B2O3和制备温度对该复合涂层在1500℃静态空气中防氧化能力的影响.结果表明,在第一步包埋粉料中含有B2O3会增加SiC过渡层缺陷含量,降低单一SiC涂层和复合涂层抗氧化性能.第二步包埋制备外涂层的适宜温度为2 250℃,所形成的复合涂层结构致密,有良好的自愈性和优异的抗氧化性能.能在1 500℃保护C/C复合材料抗氧化170 h以上.产生穿透性裂纹是涂层失效的主要原因.  相似文献   

8.
引言以前关于C/C复合材料在高温下(2000F)的抗氧化研究,集中在使用耐火材料涂层上,这些耐火材料涂层的氧化保护机理是在一定的温度操作过程中,通过所产生的粘性玻璃密封C/C材料在氧化中的裂纹,但是,由于炭基体和涂层之间热膨胀系数不同而产生的裂纹,导致了氧化性能的降低。目前,还没有任何涂层方法对C/C复合材料在中温和高温下提供满意的氧化保护,因此,有必要采用内部密封层或氧化抑制剂来增强炭基体本身的抗氧化性能。本文主要研究利用抑  相似文献   

9.
C/C复合材料MoSi2-Mo5Si3/SiC涂层的制备及组织结构   总被引:5,自引:0,他引:5  
采用化学气相反应法和料浆刷涂反应法,在C/C 复合材料表面制备了MoSi2-Mo5Si3/SiC复合涂层,借助X射线衍射仪、扫描电镜及能谱等分析手段,对涂层的形成、组织结构进行了研究,并初步考察了涂层的高温抗氧化性能.结果表明:制备的复合涂层厚度为40μm左右,主要由β-SiC、MoSi2及少量的Mo5Si3组成. 1350°C等温氧化10h后,复合涂层试样的氧化失重率只有1.21%,明显低于C/C复合材料SiC单涂层试样,其高温抗氧化性能得到明显的提高.因此,与C/C复合材料SiC单涂层相比,经封填改性制得的复合涂层结构更致密,具有良好的高温抗氧化性能.  相似文献   

10.
为提高炭/炭(C/C)复合材料的高温抗氧化性能,同时分析涂层制备及高温氧化对涂层材料力学行为的影响,在C/C复合材料表面采用反应熔渗、料浆涂刷结合化学气相沉积工艺制备了SiC/ZrB2-SiC/SiC三层高温抗氧化涂层。利用SEM和XRD分析复合涂层的微观结构和相组成,考察涂层复合材料1500℃高温抗氧化和1500℃-室温的抗热震性能,研究高温氧化及热震对涂层C/C复合材料力学行为的影响。结果表明,复合涂层试样1500℃静态空气环境下具有优异的抗氧化及抗热震性能:1500℃氧化20 h后试样保持增重,1500℃至室温热震50次后增重为0.69%。因涂层制备过程中粉料的渗入反应,复合材料弯曲强度增长了7.08%。在经历1500℃氧化20 h和1500℃至室温50次热震后,涂层复合材料弯曲强度有所下降,且因材料界面结合力的减弱使得纤维拔出特征明显,材料塑性断裂特征增强。  相似文献   

11.
C/C复合材料高温易氧化的缺点限制了其在航空航天领域的推广应用,涂层技术是解决该材料高温易氧化的有效手段在简要陈述制备C/C复合材料抗氧化涂层方法研究现状的基础上,主要介绍了等离子喷涂技术的原理、技术和发展等,并综述了该技术在制备C/C抗氧化单层涂层、多层涂层体系的研究进展,总结了该技术制备涂层的特点、抗氧化性能、以及工艺参数对涂层的影响和研究成果,并提出了等离子喷涂在当前制备C/C复合材料抗氧化涂层研究存在的问题和今后潜在的发展方向。  相似文献   

12.
采用水热电泳沉积法在SiC-C/C复合材料表面制备纳米碳化硅和二硅化钼的复相(SiC_n-MoSi_2)抗氧化涂层.分别采用XRD和SEM等测试手段对涂层的晶相组成和显微结构进行了表征.主要研究了沉积电压对涂层显微结构及高温抗氧化性能的影响,分析了涂层试样在1500℃下的静态氧化行为及热循环失效机理.结果表明:外涂层主要由MoSi_2和β-SiC晶相组成.当沉积电压为100~180V时,外涂层的致密程度、厚度及抗氧化性能随着沉积电压的升高而提高.沉积电压过高(220V)时,复合涂层中出现裂纹等缺陷,涂层的氧化保护能力相应减弱.抗氧化性能测试表明复合涂层可在1500℃的静态空气中有效保护C/C复合材料346h,失重率仅1.41wt%.涂层的高温失效是由于涂层试样在热循环过程中产生了贯穿性裂纹导致的.  相似文献   

13.
为提高C/C-SiC复合材料的超高温抗烧蚀性能,通过浆料涂刷和高温烧结相结合的方法在C/C-SiC复合材料表面制备了ZrB2-SiC复相陶瓷涂层,利用EDS、SEM对涂层的成分及微观形貌进行了分析。对涂层材料的力学性能和抗烧蚀性能进行了表征,结果表明:制备的ZrB2-SiC复相陶瓷涂层保护C/C-SiC复合材料的拉伸强度、弯曲强度及剪切强度分别为147 MPa、355 MPa和21.9 MPa,与无涂层保护的针刺C/C-SiC复合材料的力学性能相比略有下降。涂层材料具有良好的抗氧化烧蚀性能,经过热流密度为3 200 kW/m2的氧乙炔火焰烧蚀600 s试验,其线烧蚀率和质量烧蚀率分别为0.001 mm/s和0.0006 g/s。  相似文献   

14.
在C/C 复合材料表面制备了MoSi2-SiC 抗氧化涂层, 分析了涂层工艺对C/C 复合材料组织的影响, 测试了材料的室温弯曲力学性能。结果表明, 该工艺在C/C 复合材料表面生成抗氧化涂层的同时, 基材内部的层间和纤维束界面, 以及孔隙周围也被硅化。C/C 复合材料经涂层工艺处理后, 弯曲断裂行为发生改变, 弯曲强度明显升高,塑性有一定程度的降低。   相似文献   

15.
C/C复合材料作为高温结构材料,高温易氧化的缺点限制了其在航空航天领域的应用。涂层法是解决该材料高温易氧化的有效手段。主要介绍了C/C复合材料等离子喷涂含MoSi_2高温抗氧化涂层的原理、发展情况及研究现状,并且提出了等离子喷涂在当前制备含MoSi_2高温抗氧化涂层研究中存在的问题和今后潜在的发展方向。  相似文献   

16.
Cf/SiC复合材料因其低密度,高比强度,优异的抗热震、抗氧化和抗烧蚀性能以及高温强度保持率,被认为是高速飞行器的重要热防护材料之一。然而,由于碳纤维在500℃以上发生显著氧化导致材料逐渐失效,因此需对其进行有效的氧化防护。抗氧化涂层被认为是实现Cf/SiC复合材料长时氧化防护的有效手段。本文基于热防护系统对Cf/SiC复合材料抗氧化性能的苛刻要求,综述了现有Cf/SiC复合材料表面抗氧化涂层的研究进展,着重对抗氧化涂层制备技术及涂层体系进行了梳理。提升Cf/SiC复合材料抗氧化涂层使用温度(≥1800℃)及结合强度是当前需要重点解决的问题,制备更长服役时间、更高服役温度同时兼具抗氧化、抗水蒸气腐蚀乃至较好隔热性能的多功能涂层是未来发展的重要方向。  相似文献   

17.
涂层技术是C/C复合材料高温抗氧化与抗烧蚀的有效手段,单一的SiC涂层很难为C/C复合材料提供有效的长寿命保护。金属间化合物MoSi2高温时会形成一层致密的SiO2保护膜,具有特别优异的高温抗氧化性能,常作为C/C复合材料的高温抗氧化涂层。本文采用超音速等离子喷涂法在带SiC涂层的C/C复合材料表面制备了MoSi2涂层,主要研究了喷涂功率、主气(Ar)流量对粉料表面温度、飞行速度、沉积率以及对涂层表面微观结构和结合强度的影响。结果表明:喷涂功率在47.5~52.5 kW之间,既能使粒子有较高的速度和温度,还能保证粉末不过熔,在喷涂功率为50 kW时,粉料的沉积率最高,氧化不高,涂层表面致密性好,截面结合紧密,结合强度高;Ar流量为65 L/min时,能够保证MoSi2粉末有较高的表面温度与较快飞行速度,沉积率最高,氧化不高,涂层表面致密,几乎没有孔隙与裂纹。因此,调控超音速等离子体喷涂工艺参数能够在带SiC涂层的C/C复合材料表面得到致密且结合良好的MoSiO2涂层。  相似文献   

18.
C/C复合材料在使用过程中往往经受急冷急热与高温燃气冲刷。为了研究涂层C/C复合材料的动态氧化行为及失效机制,本文对SiC/MoSi_2涂层C/C复合材料试样的全温抗氧化性能以及抗冲刷性能进行测试分析.结果表明:SiC/MoSi_2涂层试样具有良好的高温抗燃气氧化冲刷性能,在经历1 600℃高温燃气冲刷55.5 h,10次室温~1 600℃~室温急冷急热考核后,失重率仅为7.68%;涂层试样在高温风洞中动态氧化失效的原因是位于缺陷氧化最敏感温度处的试样微区的氧化损耗最为严重,导致试样在该微区处的力学性能显著下降,使其无法承受气动载荷而发生断裂.  相似文献   

19.
碳/碳复合材料的氧化与防护   总被引:12,自引:1,他引:12  
碳/碳复合材料的氧化敏感性限制了它的应用,为满足未来宇航飞行器等对高温结构材料的需要,必须彻底解决碳/碳复合材料的氧化防护问题。本文在认真分析碳/碳复合材料氧化过程的基础上,全面总结了提高碳/碳复合材料的抗氧化途径,其具体方法包括:材料内部结构、纤维、基体的改进和用各种方法在其表面施加保护涂层。同时,进一步发现:一种包括硼酸盐玻璃作内涂层,以SiC、Si_3N_4、SiO_2等作为外涂层的多层涂层系统,能在1700℃以下对碳/碳复合材料提供较好的防护。  相似文献   

20.
为了提高C/C复合材料的抗氧化性能,采用大气等离子喷涂(APS)法在C/C表面制备ZrO2/SiO2复合涂层,选用氧乙炔在1450,1700,2000℃下对涂层进行烧蚀考核,并对团聚粉体以及烧蚀前后涂层的成分及组织进行分析.结果 表明:大气等离子喷涂虽然可以实现C/C基体表面ZrO2/SiO2复合涂层的制备,但是由于2种材料熔点差异较大导致粉体熔融不充分,涂层孔隙率为40.12%,涂层结合强度为12.1 MPa.ZrO2/SiO2复合涂层抗烧蚀性能表现较好,其防护机理随温度的增加可以分为2个阶段:低温阶段,SiO2熔化并起到封填愈合作用,提高了致密度,ZrO2逐渐形成骨架,支撑液态SiO2;高温阶段,SiO2逐渐蒸发损耗,涂层中仅剩ZrO2并且发生烧结,继续起到抗氧化烧蚀的作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号