首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
大孔树脂分离纯化紫甘蓝中的花色苷   总被引:1,自引:0,他引:1  
采用大孔吸附树脂法纯化紫甘蓝中的花色苷,考察不同极性树脂对花色苷的静态吸附性能及动态吸附性能和纯化效果的影响,确定紫甘蓝花色苷的纯化工艺条件。研究发现HPD 500树脂对花色苷的吸附选择性最好。以色价为标准,同时考虑到吸附率和解吸率,确定了HPD 500树脂对紫甘蓝中花色苷的纯化工艺条件。结果表明,HPD 500树脂纯化花色苷的最佳条件为:上柱液pH2.5,上柱液吸光度0.707,上柱液体积1.5 BV,吸附流速1.5 BV/h,洗脱流速1.5 BV/h,解吸液为质量分数60%的酸性乙醇(pH2.5)。最佳条件下得紫甘蓝花色苷色价为47.8,提高为初始值(2.3)的20.8倍。  相似文献   

2.
蓝莓果渣花色苷大孔树脂纯化工艺研究   总被引:1,自引:0,他引:1  
以蓝莓果渣为原料,利用大孔树脂分离纯化蓝莓果渣花色苷。对比了D101和AB-8两种不同极性的大孔树脂静态吸附和解吸效果。结果表明,AB-8型大孔树脂吸附率和解吸率分别为88.5%、64.7%;D101型大孔树脂吸附率和解吸率分别为86.7%、61.2%,AB-8型大孔树脂吸附率和解吸率均优于D101型大孔树脂,故选用AB-8型大孔树脂对蓝莓果渣进行纯化试验。AB-8型大孔树脂最佳吸附和解吸条件为吸附平衡时间4 h,解吸平衡时间4 h,花色苷溶液pH 3.0,解吸液pH 3.0,解吸液乙醇体积分数60%,上样质量浓度1 mg/mL,上样流速1 mL/min,洗脱流速1 mL/min。纯化后蓝莓果渣花色苷色价约为纯化前的3倍,糖和蛋白质等杂质大幅降低,纯度有了较大提高。  相似文献   

3.
目的:探究大孔吸附树脂富集纯化罗汉果茎叶中山奈苷的最佳工艺。方法:以废弃罗汉果茎叶为原料,采用高效液相测定山奈苷含量,以吸附率和解吸率为指标,采用静态吸附试验对5种大孔树脂进行筛选,优选出吸附解吸性能最佳的大孔树脂,并对纯化条件进行优化,确定最佳工艺参数。结果:AB-8型树脂对罗汉果茎叶中山奈苷有较好的吸附和解吸附效果,其工艺为:上样液质量浓度0.8019 mg/mL,吸附流速为2 BV/h,上柱量为13 BV,以5 BV 50%的乙醇洗脱,洗脱流速为2 BV/h,纯化后产品中山奈苷的纯度高达52.12%。结论:AB-8型树脂适合富集纯化罗汉果茎叶中山奈苷。  相似文献   

4.
分别对12种大孔吸附树脂和6种阳离子交换树脂对桑葚花色苷的吸附性能进行了比较,通过静态吸附和解吸实验筛选出最佳大孔吸附树脂为LX-68,最佳阳离子交换树脂为D001。分别对这2种树脂进行静态和动态条件优化,确定了LX-68树脂最佳纯化条件为:以吸光度值0.991,pH值为3的色素液,8BV/h上样,用pH值为2、体积分数为80%的酸性乙醇作洗脱剂,洗脱流速为1BV/h,纯化后色素色价为114,纯度为39.9%,花色苷收率为91.5%。D001树脂最佳纯化条件为:以吸光度1.411Abs,pH值为2的色素液,6BV/h上样,用pH值为1、60%的酸性乙醇以3BV/h的洗脱流速洗脱,得到色价为65的色素粉末产品,纯度为24.1%,花色苷收率为67.6%。LX-68树脂和D001树脂对桑葚花色苷均具有较好的吸附分离性能,且LX-68树脂的分离效果优于D001树脂。  相似文献   

5.
目的:得到黑米花色苷最佳提取工艺,建立应用大孔吸附树脂纯化花色苷的方法。方法:以矢车菊素-3- 葡萄糖苷为跟踪指标,通过单因素试验和正交试验,对影响黑米花色苷提取的各因素进行研究,比较9 种大孔吸附树脂对花色苷的静态吸附和解吸性能。结果:黑米花色苷最佳提取条件,提取液乙醇- 水- 盐酸体积比为50:50:0.5,温度50℃,固液比为1:10(g/mL),提取时间为1h,提取次数为3 次。通过对9 种大孔吸附树脂的比较,确定AB-8 为纯化黑米的理想吸附树脂,80% 乙醇为洗脱剂,上样流速为1.0BV/h,解吸流速为2.0BV/h。结论:测定经树脂纯化后提取物中花色苷的含量达到22.59%(粗提物中花色苷含量为3.448%),树脂富集倍数为 6.02,此工艺条件纯化效果显著。  相似文献   

6.
大孔树脂分离纯化蓝莓花色苷研究   总被引:1,自引:0,他引:1  
以蓝莓粗提液为原料,研究6种大孔吸附树脂对蓝莓花色苷吸附和解吸性能,优化NKA–2树脂对蓝莓花色苷吸附和解吸条件。实验结果表明,NKA–2树脂对蓝莓花色苷纯化效果较好;蓝莓花色苷在NKA–2树脂上吸附平衡时间为4 h,解吸平衡时间为3 h,40℃、pH 3.0时吸附率较高,采用体积分数为70%乙醇解吸可取得较好解吸率;动态吸附最佳条件为:上样流速2 ml/min,70%乙醇解吸流速为2 ml/min。  相似文献   

7.
采用AB-8型大孔树脂纯化短梗五加果花色苷,以吸附率和解吸率为考察指标,确定短梗五加果花色苷的最佳纯化条件:AB-8型大孔树脂对短梗五加果花色苷的静态吸附平衡时间为4 h,静态解吸平衡时间为2 h,上样液pH 2,洗脱液pH 2,洗脱液乙醇体积分数70%,上样流速1 mL/min,质量浓度1 mg/mL,洗脱液的流速1 mL/min。  相似文献   

8.
通过紫外、液相测定花青素和花色苷含量,比较了10种大孔树脂对欧洲越橘提取物的吸附和解吸效果,从中筛选出适合分离纯化欧洲越橘提取物的树脂,并对其吸附和解吸条件进行了探讨。结果表明:DM21树脂为纯化欧洲越橘提取物的最佳树脂,确定最佳吸附流速2BV/h,吸附pH值为3.5 4.0,解吸溶剂为70%乙醇。经DM21树脂精制得到的欧洲越橘提取物花青素含量为25.0%以上,花色苷含量高于36.0%,符合市场要求。  相似文献   

9.
以鼠曲草黄酮的吸附率、解吸率为指标,考察了六种大孔吸附树脂对鼠曲草中总黄酮的纯化性能,筛选出最佳的大孔吸附树脂,采用动态法分析了吸附流速、pH条件、解吸液乙醇浓度和解吸液流速对吸附解吸的影响,同时采用高效液相色谱法进行分析检测表征了纯化的效果。实验结果表明,大孔吸附树脂AB-8对鼠曲草总黄酮有很好的吸附和解吸性能,并确定了最佳的吸附和解吸条件为:样品液pH=4.0、吸附流速为2BV/h、解吸液乙醇浓度为50%、解吸流速为2BV/h。树脂饱和吸附量为14.7mg/g湿树脂,在此条件下鼠曲草黄酮纯度由原来的28.0%提升到59.4%。  相似文献   

10.
通过比较八种大孔吸附树脂的吸附和解吸性能,发现大孔吸附树脂D101对花椒叶黄酮的纯化效果最佳。采用动态法对样品液吸附的流速、pH条件、解吸液乙醇浓度和解吸液流速进行了研究。同时采用高效液相色谱法进行分析表征了分离纯化的效果。实验结果表明,大孔吸附树脂D101对花椒叶总黄酮的最佳吸附解吸条件为:样品液pH为4、吸附流速为2BV/h、解吸液60%乙醇,解吸流速2BV/h。经纯化后花椒叶黄酮纯度由23.2%提高到了56.4%。  相似文献   

11.
大孔吸附树脂纯化八角枫根中水杨苷工艺   总被引:1,自引:0,他引:1  
研究大孔树脂纯化八角枫根中水杨苷的最佳工艺条件。以水杨苷的吸附率和解吸附率为评价指标,筛选树脂种类,并优化吸附和洗脱条件。8种大孔吸附树脂中,HPD-826型大孔树脂对水杨苷具有较好的吸附分离性能,最佳的纯化工艺条件为上样液质量浓度45.12μg/mL、最大上样量6.5BV、径高比1:8、洗脱流速3BV/h,先用4BV的水洗柱除去水溶性杂质,再用5BV体积分数30%乙醇溶液洗脱。经HPD-826型大孔树脂处理后的水杨苷回收率可达78%左右,HPD-826大孔树脂对水杨苷纯化的综合性能较好,工艺稳定、可行,适合于工业化生产。  相似文献   

12.
通过比较9种大孔树脂对甜茶素的吸附和解吸效果,筛选出适合甜茶素分离纯化的树脂,并对其纯化工艺条件进行了探讨。结果表明,SA-3型大孔吸附树脂最适合甜茶素纯化。最佳吸附条件为:上柱液甜茶素浓度控制在1.00 mg/m L~3.00 mg/m L,上样流速3 BV/h,上样液体积控制在17 BV以内;最佳洗脱条件为:70%乙醇3 BV/h洗脱,洗脱体积为13 BV。经SA-3型大孔吸附树脂纯化纯度甜茶素可达到45%左右。  相似文献   

13.
大孔树脂纯化蓝莓果中花色苷的研究   总被引:6,自引:1,他引:5       下载免费PDF全文
比较了10种大孔树脂对蓝莓花色苷的吸附和解吸效果,研究了AB-8型大孔树脂对蓝莓花色苷的吸附与解吸条件.结果表明,AB-8型大孔树脂是纯化蓝莓花色苷效果较好的树脂;蓝莓花色苷在AB-8型树脂上的吸附平衡时间为4 h,解吸平衡时间为2 h,吸附的最适质量浓度为750 mg/L;30 ℃,pH 3.0时吸附能力比较强,解吸时宜选用体积分数60 %乙醇溶液.该工艺生产的花色苷产品为紫黑色粉末,色价为54.10,回收率为88.20 %.  相似文献   

14.
比较了6种大孔树脂对紫苏花色苷的吸附-解析性能,确定了纯化紫苏花色苷的工艺条件。结果表明:XDA-8树脂为纯化紫苏花色苷的最佳树脂,静态实验最优条件为:吸附平衡时间6h,pH2.5;解析平衡时间3 h,pH2.5。动态实验最优条件为:上样液质量浓度1.17 mg CGE/m L,上样流速3 BV/h,解析液乙醇体积分数60%,解析流速2 BV/h,解析液用量5 BV。纯化后的花色苷为紫红色粉末,其纯度为7.52%,比纯化前提高了8.26倍。HPLC分析表明,纯化前后花色苷的性质没有发生变化。  相似文献   

15.
研究了大孔吸附树脂R5对柚汁中柚皮苷动态吸附和解吸性能。结果表明:树脂最佳吸附条件为:流速5BV/h(BV为树脂体积倍数)、温度25℃和柱高径比10∶1;树脂最佳解吸条件为:流速2BV/h、洗脱温度50℃和洗脱液为70%乙醇水溶液。  相似文献   

16.
目的:研究利用大孔吸附树脂从白果壤果实中分离纯化苯乙醇苷的工艺。方法:通过静态吸附试验,比较了4种不同类型大孔树脂对白骨壤果实中苯乙醇苷的吸附及解吸附性能,通过动态吸附试验确定了最佳纯化工艺参数。结果:DA-201大孔吸附树脂对苯乙醇苷的吸附和解吸效果较为理想,吸附量和解吸率分别为61.84 mg/g和81.80%。DA-201大孔吸附树脂对苯乙醇苷的最佳动态吸附参数为上样液浓度为6.308 mg/mL,控制上样流速为1.5 BV/h,60%的乙醇溶液解吸DA-201大孔吸附树脂的解吸率最高。放大试验发现,饱和吸附量为44.156 mg/mL,8 BV时基本解吸完成(60%乙醇),获得的苯乙醇苷纯度为38.22%。结论:采用DA-201大孔吸附树脂能够高效分离纯化白骨壤果实中苯乙醇苷。  相似文献   

17.
研究大孔吸附树脂分离纯化菜芙蓉黄酮的最佳工艺条件。以总黄酮吸附量和解吸量为指标,进行静态吸附和解吸试验对14种型号大孔树脂进行筛选,再通过动态吸附和解吸试验对纯化工艺参数进行优化。Z801大孔树脂对菜芙蓉总黄酮的吸附与解吸性能最佳。HZ801纯化菜芙蓉黄酮的最佳工艺条件为:上样浓度为1 mg/m L,上样流速2 m L/min,上样量为140 m L;依次用2 BV水洗脱,用70%乙醇以2 m L/min的速率洗脱2.2 BV。在优化工艺条件下,菜芙蓉黄酮的平均吸附率是95.03%,纯化倍数4.04。HZ801型大孔树脂富集黄酮的效果最佳,是一种较理想的分离纯化介质。  相似文献   

18.
采用大孔树脂法考查紫苏叶迷迭香酸的吸附性能和纯化效果,以确立紫苏迷迭香酸纯化工艺。通过动态吸附和解吸实验筛选出适合紫苏迷迭香酸分离纯化的大孔树脂,并通过动态吸附确定其分离纯化工艺参数。结果表明,XDA-8是分离纯化紫苏迷迭香酸的最佳树脂,其吸附洗脱紫苏迷迭香酸的最佳工艺条件为:吸附流速2 BV/h,水洗脱用量2 BV,70%乙醇洗脱液用量12 BV,洗脱流速1.0 BV/h。在此条件下得到的紫苏迷迭香酸产品纯度由0.52%提高到13.97%,提高了27倍。  相似文献   

19.
目的 优化洋甘菊中2种咖啡酰基奎宁酸大孔吸附树脂纯化工艺。方法 以2种咖啡酰奎宁酸的吸附率和解吸率为评价指标筛选树脂种类。以吸附率和解吸率为评价指标,筛选最优工艺参数,包括上样液浓度、上样量、吸附速率、水冲洗用量、洗脱剂种类和用量等。结果 最佳条件为采用AB-8大孔吸附树脂纯化,药液浓度0.20 g/ml,树脂柱径高比1:6,吸附速率2 BV/h,在此条件下,上柱量达7 BV;吸附好的树脂先用1 BV水洗净,流速5 BV/h,再用3 BV 50%乙醇和1 BV 70%乙醇洗脱活性部位,合并洗脱液,浓缩,干燥既得。结论该工艺稳定可靠,可用于大孔吸附树脂纯化洋甘菊中2种咖啡酰基奎宁酸。  相似文献   

20.
目的:探讨大孔树脂分离纯化迷迭香叶总黄酮及抗氧化活性。方法:选择6种类型大孔树脂,比较其吸附量、吸附率和解吸率,筛选最佳树脂,单因素分析最佳纯化工艺条件,检测迷迭香叶总黄酮体外抗氧化活性。结果:AB-8为最佳树脂,上样液浓度为2.25mg/mL,上样流速为3BV/h,pH为3.15,上样体积为1.5BV。以4BV 80%乙醇在流速2BV/h下洗脱,得黄酮的纯度为68.39%,精制倍数为3.37。迷迭香总黄酮对DPPH和ABTS自由基具有良好的清除能力。结论:AB-8树脂对迷迭香叶总黄酮具有良好的吸附和解吸效果,且迷迭香叶总黄酮具有良好的抗氧化作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号