首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 420 毫秒
1.
用共沉淀和浸渍法制备SO24-/TiO2-ZrO2-Nd2O3三元超强酸,以其为催化剂,合成双季戊四醇六辛酸酯,考察了钕(Nd)的质量分数、焙烧时间、焙烧温度对三元超强酸催化性能的影响;同时采用正交试验对制备条件进行了优化。催化剂用BET、SEM、XRD、FTIR表征,双季戊四醇六辛酸酯的结构采用FTIR表征。结果表明,加入Nd使固体酸体积变大,酸性增强,550℃时超强酸中的TiO2由无定型结构变为锐钛矿晶型结构,SO24-/TiO2-ZrO2-Nd2O3的最佳制备条件是Nd质量分数为1.5%,焙烧温度550℃,焙烧时间4h,其酯化率达92.3%。FTIR表征结果认证了产品为双季戊四醇六辛酸酯。  相似文献   

2.
SO42-/Fe2O3型固体超强酸的制备及酯化催化活性的研究   总被引:6,自引:3,他引:6  
研究了由FeSO4·7H2 O直接焙烧制备SO2 -4/Fe2 O3 型固体超强酸时 ,焙烧温度、焙烧时间对催化剂性能的影响 ,并对制得的SO2 -4/Fe2 O3 型固体超强酸催化剂 ,测定了其SO2 -4与Fe2 O3 的摩尔比、表面酸度、酯化催化活性等数据 ,得到了SO2 -4/Fe2 O3 型固体超强酸的最佳制备条件 :焙烧温度 5 5 0℃ ,焙烧时间 5h。在此条件下 ,制得的SO2 -4/Fe2 O3 型固体超强酸催化剂中SO2 -4与Fe2 O3 的摩尔比为 1.71时 ,相应的表面酸度最大 (3.4 7mmol/g) ,对酯化反应的催化活性最好 ;SO2 -4与Fe2 O3 的摩尔比低于或高于这一数值 ,对应的表面酸度值都降低 ,对酯化反应的催化活性也降低。适量吸水会使SO2 -4/Fe2 O3 固体超强酸催化剂的表面酸度增加 ,从而使其对酯化反应的催化活性提高 ,但吸水过多 ,反而会导致其对酯化反应的催化活性丧失  相似文献   

3.
用溶胶凝胶法制备了固体超强酸,用XRD和SEM对其进行了表征,并用该固体超强酸催化合成了乙酸乙酯。结果表明:TiO2/SO24-的最佳焙烧时间为3 h,最佳焙烧温度为500℃,最佳浸渍浓度为1.5 mol/L;TiO2/SO24-催化酯化反应的最佳反应时间15 min,反应温度100-105℃,固体酸的投加量2%,最佳醇酸比1 1.3;并可重复使用,使之成为安全、绿色、环境友好的催化剂。  相似文献   

4.
制备了以纳米SiO2为载体的SO2-4 TiO2-ZrO2-La2O3的固体超强酸催化剂,代替浓硫酸用于酯化反应,并讨论了在纳米载体SiO2的存在下,不同Zr Ti比值、不同的焙烧温度对酸转化率的影响;并与以纳米SiO2为载体的SO2-4 TiO2-ZrO2催化剂进行了对比,讨论掺杂金属La3 对固体超强酸的影响.实验表明,表面多孔纳米级载体SiO2的引入一方面增大了催化剂的比表面积,使活性中心增加;另一方面由于Si的电负性强于Zr、Ti,它的吸引作用使催化剂的酸中心增强,达到提高催化能力的目的.最终确定的最佳焙烧温度为450℃,最佳的Zr Ti比值为0.5.  相似文献   

5.
采用溶胶-凝胶法制备SO42-/TiO2固体超强酸,以异辛酸与季戊四醇的酯化反应为探针反应,考察浸渍液种类及浓度、焙烧温度对固体超强酸催化性能的影响。用流动指示剂法测定催化剂的酸强度,并采用原位吡啶吸附的IR谱图对催化剂进行表征。结果表明,在H2SO4浸渍液浓度为1.0 mol.L-1、500℃下焙烧3 h制备的SO42-/TiO2催化剂活性最好,酯化率可达到85.0%。  相似文献   

6.
采用溶胶一凝胶法制备SO2-/TiO2固体超强酸,以异辛酸与季戊四醇的酯化反应为探针反应,考察浸渍液种类及浓度、焙烧温度对固体超强酸催化性能的影响.用流动指示剂法测定催化剂的酸强度,并采用原位吡啶吸附的IR谱图对催化剂进行表征.结果表明,在H2SO4浸渍液浓度为1.0 mol·L-1、500℃下焙烧3 h制备的SO2-4/TiO2催化剂活性最好,酯化率可达到85.0%.  相似文献   

7.
以醋酸和乙醇酯化为模型反应 ,考察了SO2 - 4/γ -Al2 O3,SO2 - 4/ZrO2 ,SO2 - 4/Fe2 O3等几种SO2 - 4/MxOy 型固体超强酸及其不同的制备方法对酯化反应催化活性的影响 ,得出以FeSO4 ·7H2 O在550℃下直接焙烧 ,所得SO2 - 4/Fe2 O3型固体超强酸催化活性最佳 ,且酯化反应主要为固体超强酸催化剂表面上的B酸中心所催化的结论。  相似文献   

8.
通过浸渍法制备了SO42--TiO2/γ-Al2O3新型固体超强酸催化剂,以苯甲醛和乙二醇为原料合成了苯甲醛乙二醇缩醛。考察了催化剂的焙烧温度、带水剂的种类和体积、TiO2的质量分数、苯甲醛与乙二醇的摩尔比、催化剂的质量和回流时间对反应的影响以及催化剂稳定性对反应的影响。结果表明,在焙烧温度为500℃,甲苯为带水剂,甲苯体积为20 mL,TiO2的质量分数为10%,苯甲醛与乙二醇的摩尔比为1∶1.2,催化剂的质量为1.1 g,回流时间为1.5 h的反应条件下,苯甲醛乙二醇缩醛的收率可达96.1%,产品的纯度为99.6%。SO42--TiO2/γ-Al2O3新型固体超强酸催化剂在其它缩醛(酮)的合成中也具有良好的催化活性。  相似文献   

9.
通过浸渍法制备了SO42--TiO2/γ-Al2O3新型固体超强酸催化剂,以苯甲醛和乙二醇为原料合成了苯甲醛乙二醇缩醛.考察了催化剂的焙烧温度、带水剂的种类和体积、TiO2的质量分数、苯甲醛与乙二醇的摩尔比、催化剂的质量和回流时间对反应的影响以及催化剂稳定性对反应的影响.结果表明,在焙烧温度为500℃,甲苯为带水剂,甲苯体积为20 mL,TiO2的质量分数为10%,苯甲醛与乙二醇的摩尔比为11.2,催化剂的质量为1.1 g,回流时间为1.5 h的反应条件下,苯甲醛乙二醇缩醛的收率可达96.1%,产品的纯度为99.6%.SO42-TiO2/γ-Al2O3新型固体超强酸催化剂在其它缩醛(酮)的合成中也具有良好的催化活性.  相似文献   

10.
复合固体超强酸催化合成尼泊金酯   总被引:17,自引:0,他引:17  
合成了H -Y ,H -β ,HZSM -5,SO2 - 4/Fe2 O3,SO2 - 4/TiO2 ,SO2 - 4/TiO2 -Fe2 O3,SO2 - 4/TiO2 -SnO2 -Fe2 O3固体酸催化剂 ,考察了催化剂的催化活性。以对羟基苯甲酸为原料合成尼泊金系列酯 ,讨论了催化酯化的各种影响因素。研究发现 ,各种催化剂性能差别较大 ,沸石催化剂的催化活性较低 ,复合固体超强酸有较高的催化活性。用复合固体超强酸SO2 - 4/TiO2 -SnO2 -Fe2 O3催化合成尼泊金酯催化效果最佳。酯化反应最佳条件为 :以甲苯做带水剂 ,催化剂用量占反应物对酸质量的 3 % ,醇酸摩尔比为 4∶1 ,酯化时间为 4h。在此条件下 ,合成尼泊金丙酯、丁酯、异丙酯的产率分别为 85.2 %、86.0 %和83 .5%。实验结果表明 ,复合固体超强酸SO2 - 4/TiO2 -SnO2 -Fe2 O3是合成尼泊金酯的较优催化剂 ,具有良好的催化活性。该催化剂制备工艺简单、无腐蚀性 ,可重复使用。  相似文献   

11.
制备了稀土改性固体超强酸SO24-/TiO2-La2O3环境友好催化剂,并以丁酸丁酯的合成作为探针反应,系统考察了原料摩尔比n(La3+)∶n(Ti4+)、硫酸浸渍时间、焙烧温度、活化时间等制备条件对SO24-/TiO2-La2O3催化活性的影响.实验表明:制备催化剂的适宜条件是原料摩尔比n(La3+)∶n(Ti4+)=1∶34,浸渍浓度为0.8 mol.L-1,浸渍时间为24 h,焙烧温度为480℃,活化时间3 h.利用优化条件下制备的催化剂SO24-/TiO2-La2O3催化合成缩醛(酮),在醛/酮与二元醇(乙二醇,1,2-丙二醇)的投料摩尔比为1∶1.5,催化剂的用量占反应物总投料质量的0.5%,反应时间为1 h条件下,10种缩醛(酮)的产率为41.4%~95.8%.  相似文献   

12.
以TiO2为载体,采用沉淀浸渍法制备负载型SO4^2-/TiO2固体超强酸催化刑.运用酸强度测试、比表面积、全硫测定、IR、XRD等方法对所制备的催化剂进行表征.测试结果表明,所制备的催化剂具有固体酸催化刑的特征.并探讨焙烧温度及浸渍液浓度对固体超强酸结构及酸性的影响.  相似文献   

13.
SO_4~(2-)/TiO_2固体超强酸催化剂的表面化学研究   总被引:9,自引:0,他引:9  
通过沉淀、老化、过滤、洗涤、干燥、浸渍和焙烧等过程,从TiCl4和H2SO4制备了SO42-/TiO2固体超强酸。用XRD、LRS方法研究了SO42-/TiO2和TiO2的本体和表面结构;用化学分析法、Hammett指示剂滴定法和吡啶吸附的FT-IR光谱法测定了SO42-/TiO2的S含量、酸强度、酸中心类型和SO42-/TiO2表面上SO42-与TiO2表面的结合形式;用XPS测定了SO42-/TiO2的能量。研究结果表明,当预处理温度在425~575℃内,SO42-/TiO2催化剂体系可以形成固体超强酸,同时其表面上存在Lewis酸中心和Bronsted酸中心,并且Lewis酸中心和Bronsted酸中心可以相互转化;在本体中和表面上主要呈金红石结构,并没有Ti(SO4)2和TiOSO4的晶型存在;SO42-/TiO2表面上的OH为Bronsted酸中心,Ti4+上的空位为Lewis酸中心,SO42-以齿桥的形式与Ti4+配位,由于S+6的强吸电子能力而产生强的电子诱导效应,从而产生超强酸中心。  相似文献   

14.
通过正交试验优化了三元稀土固体超强酸催化剂S2O2-8/Nd2O3-ZrO2-Al2O3的制备条件,最优条件为:陈化温度为-15℃,浸渍液浓度为1.5mol/L,焙烧温度为500℃.经过红外光谱法、X射线衍射法、透射电镜法对制备的催化剂进行了表征,结果表明:SO2-4与催化剂表面形成的是桥式双配位,而且拥有高催化性能;催化剂表面还呈现晶态结构,确定为表面催化;该催化剂其平均粒径小于17nm,处于纳米尺度.  相似文献   

15.
采用浸渍法制备了负裁稀土的固体超强酸Ce(Ⅳ)-SO4^2-/TiO2催化剂,以柠檬酸三丁酯的合成为探针反应进行了单因素测试.实验结果表明,当Ce(SO4)2-4H2O的质量分数(占浸渍液)为2.0%,H2SO4浸渍液浓度为0.6mol/L,酸醇摩尔比1:4,催化剂用量为1.2g,反应时间为3.0h时,酯化率为86.5%.重复使用5次后,其酯化率仍达78,7%.  相似文献   

16.
以三氯氧磷和环氧氯丙烷为原料,在自制催化剂固体超强酸SO4^2-/TiO2-Al2O3/La^3+作用下合成了磷酸三(1,3-二氯丙基)酯,研究了SO4^2-/TiO2-Al2O3/La^3+对合成反应的影响.结果表明:在n(环氧氯丙烷):n(三氯氧磷)=3.3:1、催化剂用量为三氯氧磷的2%、反应时间为3h时,酯化率达98.5%.该催化剂易于回收且可重复使用.  相似文献   

17.
SO42-/TiO2固体超强酸催化合成糠酸乙酯的研究   总被引:3,自引:0,他引:3  
以自制糠酸和乙醇为原料,以SO^2-4/TiO2固体超强酸为催化剂合成了糠酸乙酯,并对反应温度、反应时间、催化剂用量以及反应原料酸醇的物质的量之比等条件进行了考察,结果表明,实验的最佳反应条件为酸醇的物质的量之比1:4,催化剂用量1.5g(当糠酸的物质的量为0.05mol时),反应时间为6~7h,反应温度为60℃。  相似文献   

18.
采用SO4^2-/TiO2代替传统工艺中的硫酸水溶液,对溴氨酸进行ullmann缩合反应.考察了反应温度、反应时间、催化剂投加量等因素对反应收率的影响.结果表明:在2.02g溴氨酸、0.95g铜粉、80mL蒸馏水的体系中,SO4^2-/TiO2用量为1.00g,在70℃下反应90min,溴氨酸缩合产物收率可达91%以上.催化剂可回收,用于光催化氧化溴氨酸缩舍反应产生的废水.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号