首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
本文实验研究了轧后冷却方式对低碳钛微合金钢组织、析出行为以及力学性能的影响。结果表明,不同的轧后冷却方式(层流冷却、层流冷却+超快速冷却、超快速冷却)下实验钢的组织主要是细晶铁素体。与层流冷却工艺相比,采用超快速冷却工艺能够细化铁素体晶粒尺寸,促进微合金元素Ti在铁素体中的析出且细小弥散。采用超快速冷却工艺,实验钢的抗拉强度和屈服强度分别达到了760MPa和683MPa,比层流冷却工艺下实验钢分别提高了40MPa和20MPa。  相似文献   

2.
以复合添加Nb,V和Ti的低碳微合金钢为研究对象,采用热模拟试验机模拟高温轧制+超快速冷却+缓冷工艺,采用OM,HRTEM和显微硬度计等对超快冷至不同温度实验钢的组织转变和析出规律进行研究.结果表明,随着超快冷终冷温度的升高,显微组织由贝氏体向珠光体和铁素体转变,碳化物形核位置从贝氏体转变为铁素体,铁素体中的析出物密度大于贝氏体中的,且在620℃达到最大.超快冷至不同温度时析出物的尺寸均小于10 nm,纵横比均接近于1,即析出物形态更接近于球形,且随终冷温度的降低,析出物尺寸逐渐减小.利用Orowan机制计算了析出强化增量,得出在620℃析出强化对屈服强度的贡献最大,可达到25.6%.  相似文献   

3.
商艳  李龙  丁桦 《轧钢》2007,24(1):10-14
通过对含Nb微合金钢控制轧制后,进行快速冷却+超快速冷却工艺的研究,得到了针状铁素体、板条马氏体及下贝氏体多相组织。实验钢在850℃终轧后,以高于50℃/s的冷却速度快速冷却到中间温度(600~550℃),空冷2~3s,之后采用超快速冷却至低温卷取。实验钢具有多相组织,屈服强度达到500MPa,抗拉强度明显提高,同时保证了强度和塑性的良好匹配,节约了生产时间。快冷与超快冷相结合的工艺为开发高强度微合金钢提供了新的实验手段。  相似文献   

4.
研究了超快冷+层流冷却工艺对一种Mn-Ti钢组织与性能的影响。结果表明:随入超快冷段温度的升高,实验钢的屈服强度和抗拉强度先升高后降低,随层流段出口温度的降低,其屈服强度和抗拉强度先降低后升高。当入超快冷段、出超快冷段及层流段出口的温度分别为830、699及620℃时,实验钢的屈服强度、抗拉强度及伸长率分别为675 MPa、737.5 MPa和20%,力学性能最佳,其组织以铁素体为主,在铁素体基体上存在大量的细小析出物,通过计算,其析出强化量为190 MPa,细晶强化及析出强化有效提高了实验钢的力学性能。  相似文献   

5.
采用SEM、TEM、拉伸及冲击试验等方法,对比研究了3种热轧后冷却工艺对Ti微合金高强钢板组织和性能的影响。结果表明,当轧后采用快冷+空冷工艺和空冷弛豫+层流冷工艺时,钢板组织均以粒状贝氏体组织为主,并存在少量珠光体,第二相粒子弥撒分布,尺寸小于10 nm,力学性能良好,且采用后者工艺钢板性能优于前者;当轧后采用快冷+炉冷工艺时,珠光体组织增多,第二相析出量少,尺寸大,综合力学性能较差。  相似文献   

6.
轧后采用空冷、加速冷却和两段式(前段超快冷+后段加速冷却,简称超快冷)三种冷却模式进行控制冷却,研究了冷却工艺对海洋平台用钢组织性能的影响。结果表明,空冷工艺所得试验钢的组织为多边形铁素体和马氏体,铁素体晶粒内位错密度较低,析出相数量较少,尺寸粗大;加速冷却所得试验钢的显微组织由多边形铁素体、针状铁素体和细小弥散的M/A岛组成,铁素体晶粒较空冷工艺明显细化,位错密度提高,析出物细小弥散;两段式所得试验钢的相变组织主要为针状铁素体,板条明显细化,位错密度进一步提高,析出物细小而数量降低。三种冷却工艺中,空冷工艺所得试验钢的屈强比最低,塑性最好;加速冷却工艺所得试验钢的低温韧性最佳;而采用两段式冷却工艺所得试验钢抗拉强度最高。  相似文献   

7.
张亮亮  于洋  王林  史震  李钊  王文广 《轧钢》2023,(2):46-51
为研究卷取工艺及卷取后冷却工艺对先进高强双相钢微观组织的影响,采用Gleeble-3 500热模拟试验机、光学电镜、扫描电镜和透射电镜等手段,研究了先进高强双相钢的显微组织、析出物及显微硬度随卷取温度及卷取后冷却工艺的变化情况。结果表明:与缓冷工艺相比,在卷取后采用快冷工艺,试验钢的微观组织由多边形铁素体和粒状贝氏体转变为针状铁素体和少量的M/A岛;试验钢在不同卷取及冷却工艺下的析出物为Ti(Cr, Mo)C,均为球形和近方形两种形貌,快冷工艺下的析出物尺寸均比缓冷工艺下减小约20%,析出物数量增加30%;与缓冷工艺相比,快冷工艺下试验钢的显微硬度均有不同程度提高。  相似文献   

8.
两阶段控制轧制后,采用不同的冷却路径进行冷却,研究冷却路径对Nb-Ti微合金钢组织和性能及沉淀行为的影响.结果表明,超快冷+空冷冷却路径可获得细晶组织,晶粒平均尺寸约为7.76μm,屈服强度高达425 MPa,抗拉强度高达500 MPa.超快冷+炉冷试样中存在细小的沉淀粒子,沉淀粒子尺寸主要集中在2-7 nm,而超快冷+空冷试样中只存在少量球形沉淀粒子,轧后直接空冷可获得相间沉淀粒子.不同冷却路径获得的热轧板在700℃下退火300 s后,沉淀粒子发生明显的粗化;退火处理后,超快冷+炉冷试样的晶粒平均尺寸减小为6.47μm,相对于退火前,其屈服强度和抗拉强度分别增加50和30 MPa,强度的增加主要源于细晶强化.对于含0.03%Nb(质量分数)的Nb-Ti微合金钢,由于沉淀粒子的体积分数有限,因此细晶强化效果远高于沉淀强化效果,强度的变化与晶粒尺寸的变化具有很好的对应性.另外,加工硬化指数与晶粒尺寸密切相关,随着晶粒平均尺寸的增加使加工硬化指数增加.  相似文献   

9.
冷却方式对Nb-Ti微合金钢组织和性能及沉淀行为的影响   总被引:2,自引:0,他引:2  
两阶段控制轧制后,采用不同的冷却路径进行冷却,研究冷却路径对Nb-Ti微合金钢组织和性能及沉淀行为的影响.结果表明,超快冷+空冷冷却路径可获得细晶组织,晶粒平均尺寸约为7.76μm,屈服强度高达425 MPa,抗拉强度高达500 MPa.超快冷+炉冷试样中存在细小的沉淀粒子,沉淀粒子尺寸主要集中在2—7 nm,而超快冷+空冷试样中只存在少量球形沉淀粒子,轧后直接空冷可获得相间沉淀粒子.不同冷却路径获得的热轧板在700℃下退火300 s后,沉淀粒子发生明显的粗化;退火处理后,超快冷+炉冷试样的晶粒平均尺寸减小为6.47μm,相对于退火前,其屈服强度和抗拉强度分别增加50和30 MPa、强度的增加主要源于细晶强化.对于含0.03%Nb(质量分数)的Nb-Ti微合金钢,由于沉淀粒子的体积分数有限,因此细晶强化效果远高于沉淀强化效果,强度的变化与晶粒尺寸的变化具有很好的对应性.另外,加工硬化指数与晶粒尺寸密切相关.随着晶粒平均尺寸的增加使加工硬化指数增加.  相似文献   

10.
研究了分段冷却工艺(超快冷+空冷+层流冷却)条件下一种钒微合金化双相钢的微观组织及强化机制。结果表明:试验钢的显微组织由(80.5%~83.7%)超细晶多边形铁素体和(16.3%~19.5%)块状马氏体组成,且80%以上的铁素体晶粒尺寸在1.0~2.5 μm之间,粒子直径为4~9 nm的V(C, N)弥散的分布于铁素体基体中并与高密度位错交互作用而钉扎位错。在细晶强化、析出强化、位错强化及第二相马氏体强化的综合作用下,试验钢的抗拉强度达到1000 MPa以上,且具有优异的综合性能:Rm≥1000 MPa,RP0.2≥530 MPa,δ≥23.5%,RP0.2/Rm≤0.54,n≥0.23。  相似文献   

11.
热轧后的冷却模式影响微合金高强钢的组织和析出,从而影响最终性能。在实验室对一种Ti-Nb微合金高强钢进行了前段快冷和后段快冷两种模式的热模拟试验,研究了冷却模式对Ti-Nb微合金高强钢组织和性能的影响。同时根据实验室研究结果,在国内某热连轧带钢厂对类似钢种进行了工业试验。结果表明:采用后段快冷模式,试样的晶粒尺寸(3.10μm)比前段快冷试样的晶粒尺寸(4.07μm)要小,且后段快冷试样析出物的体积分数(1.04%)比前段快冷试样析出物的体积分数(0.81%)大,后段冷却模式具有更好的细晶强化和析出强化作用。  相似文献   

12.
超快冷却技术是实现钢铁材料减量化生产的有效途径,通过对热轧带钢冷却路径的灵活控制,有利于相变强化、细晶强化、析出强化等的最佳匹配,从而使带钢获得优良的综合性能。利用超快冷却技术,在梅钢热轧产线采用前置密集冷却+空冷+后置密集冷却以及高温终轧+前置密集冷却的方法,成功开发出具有低成本、高效率、高附加值的热轧双相钢及高强工程机械用钢产品,说明了超快冷却技术具有广阔的发展前景。  相似文献   

13.
王津平  边育秀 《轧钢》2015,32(5):13-16
随着TMCP技术的发展,通过合理设计合金元素含量和在线快冷工艺,可实现相变强化、细晶强化和亚晶强化,从而实现热轧卷板强度、塑性、韧性和可焊性的良好匹配。考虑到特殊品种结构对超快层流冷却速率的要求,太钢对2 250 mm热轧生产线层流冷却区域进行了全线加密设备改造,通过采用密集快冷卷取温度控制技术,实现了高强度管线钢的减量化生产。  相似文献   

14.
采用MMS-300热/力模拟试验机研究了无Mo和含Mo管线钢X70不同冷却条件的动态相变行为并绘制了试验钢的动态CCT曲线。结合实验室轧制和冷却试验,研究了超快冷和层流冷却条件下两种成分X70管线钢的组织演变和力学性能。结果表明:随着冷却速度的增大,无Mo管线钢X70的组织构成为多边形铁素体+珠光体、多边形铁素体+针状铁素体、针状铁素体;含Mo管线钢X70的组织构成为多边形铁素体+针状铁素体、针状铁素体;Mo抑制了多边形铁素体和珠光体相变的发生。对于无Mo管线钢X70,层流冷却工艺所得到的组织有约40%的准多边形铁素体;超快冷工艺所得到的组织为针状铁素体,有利于提高X70管线钢的强韧性。超快冷工艺使晶界取向差大于15°的有效晶粒尺寸得到了细化,无Mo管线钢X70的强韧性略高于层流冷却条件下含Mo管线钢X70。超快冷条件下含Mo管线钢X70组织更细小,力学性能可满足X80管线钢的要求。  相似文献   

15.
采用光学显微镜和透射电镜研究了不同冷却速度下钒微合金钢的微观组织和析出相变化规律。结果表明:当冷却速度小于或等于5℃/s时,钢的组织均为铁素体+珠光体,且随着冷却速度的增加,铁素体的晶粒尺寸明显变细。当冷却速度达到10℃/s时,钢的组织变为马氏体+少量铁素体。透射电镜研究显示:平衡态时析出相包含大量弥散分布的尺寸主要为45~100 nm的不规则形V(C,N)相和(V,Ti)(C,N)复合相,当冷却速度小于或等于5℃/s时,析出相数量无明显改变,但颗粒尺寸随冷却速度的增加不断减小;但当冷速达到10℃/s时,析出相的数量显著下降,尺寸变小。对含钒微合金钢而言,调整适当的冷却速度,不仅可以细化铁素体晶粒,还可以提高析出强化效果,从而提高钢材的强韧性。  相似文献   

16.
V-Ti微合金钢的轧后冷却相变及第二相析出行为   总被引:2,自引:0,他引:2  
黄杰  徐洲 《上海金属》2005,27(1):14-17
通过采用Gleeble3800进行热模拟试验,研究了V—Ti微合金钢热变形奥氏体的轧后冷却相变行为。并且利用电解浸蚀和碳萃取复型法获取第二相析出物,从而对轧后冷却相变中的第二相析出行为进行了研究,并探讨了不同冷却速度对第二相析出的影响。  相似文献   

17.
现场对4 mm和8 mm两个厚度规格工程机械用钢的高温轧制+超快冷工艺进行了试验,研究了高温轧制+超快冷工艺和常规控制轧制与控制冷却(TMCP)工艺试验带钢的力学性能和微观组织。结果表明,试验钢采用高温轧制+超快冷工艺力学性能优于常规TMCP工艺的力学性能,组织较后者细小。与常规TMCP工艺相比,高温轧制+超快冷工艺轧制力明显低。  相似文献   

18.
在实验室研制了不同Ti、Nb含量的热轧钢板,并对钢板进行了轧后冷却试验,研究了Ti、Nb微合化和热轧工艺对钢板组织和力学性能的影响。在实验室研究基础上,采用微合金化工艺路线,通过控轧控冷工艺,终轧后层流冷却工艺(卷取温度采用590℃),成功试制了700 MPa级工程机械用钢。结果显示,试验钢的屈服强度大于700 MPa,抗拉强度大于785MPa,并具有良好的冲击性能、成形性能。试验钢的组织为铁素体+少量珠光体+微量马氏体,同时,在铁素体的基体上存在大量纳米级的弥散析出或相间析出的(Nb,Ti)(C,N)析出相,有效提高了试验钢的强度。  相似文献   

19.
采用热模拟试验机研究了Nb元素对含Ti低碳微合金钢的动态连续冷却转变行为的影响,利用OM和TEM对等温淬火工艺处理后实验钢的显微组织和析出行为进行观察和分析。结果表明:Nb元素使得含Ti低碳微合金钢的动态CCT曲线整体向右下方移动,大大减小了先共析铁素体和珠光体相变区,同时扩大了针状铁素体和贝氏体相变区,在较低冷速时能得到较多的针状铁素体;含Nb- Ti和含Ti两种实验钢经等温淬火工艺处理后的显微组织均由铁素体和马氏体两相组成,铁素体相中析出物平均尺寸分别为6.8、4.2 nm,利用Orowan机制对析出强化量进行计算得出析出强化量分别为90.6、142.3 MPa。  相似文献   

20.
通过拉伸性能和冲击韧性试验及显微组织观察分析了厚板生产线控制轧制(CR)后采用超快冷(UFC)和层流冷(AcC)两种冷却工艺对AH32高强船板力学性能、焊接热影响区(HAZ)冲击韧性和显微组织的影响。结果表明,与AcC钢板相比UFC钢板性能明显提高,其屈服强度提高54 MPa且塑性不恶化,-60℃冲击功达到260 J以上,韧脆转变温度大幅降低。UFC使钢的显微组织明显细化,晶粒尺寸达到11.5级,且厚度方向显微组织更均匀,而AcC钢晶粒尺寸为9.5级。UFC对钢的焊接热模拟试样冲击韧性没有明显影响。用铁素体(α)形核动力学和Hall-Petch效应分析了晶粒细化机理及对强韧性影响。UFC降低了奥氏体(γ)转变温度,提高了α形核速率而细化了铁素体晶粒,同时也细化了贝氏体和珠光体,明显提高了钢的力学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号