首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以Al-SiO_2为反应体系,借助半固态机械搅拌法,结合电磁搅拌分散工艺,制备5%α-Al_2O_(3p)/ZL109(体积分数)复合材料,并对重熔后的复合材料进行挤压铸造成型研究。结果表明:挤压铸造显著消除了复合材料因半固态机械搅拌卷气而引起的严重气孔缺陷,并细化基体α(Al)相晶粒;当压射比压达到80 MPa时,气孔缺陷完全消失,粗大的α(Al)树枝晶转变为细小的等轴晶,针状共晶Si细化成短棒状;分布在晶界的α-Al_2O_3颗粒也在一定程度上细化α(Al)晶粒。经80MPa挤压铸造的重熔复合材料的T6热处理态抗拉强度和布氏硬度分别达到347 MPa和136 HB,与ZL109基体相比,提高5.8%和5.4%;与未挤压复合材料相比,提高20.9%和18.3%。  相似文献   

2.
采用半固态搅拌技术向铝熔体中加入SiO_2粉末,通过熔体原位反应成功制备了α-Al_2O_(3p)/ZL109复合材料,并在不同挤压力下对复合材料进行了成形试验。利用扫描电镜和X射线衍射仪对复合材料的微观组织和相组成进行了分析,并测试了其力学性能。结果表明,挤压铸造原位α-Al_2O_(3p)/ZL109复合材料铸件内部缺陷少、增强颗粒均匀分散;挤压铸造后,复合材料在铸态和热处理态的抗拉强度、硬度、伸长率均明显高于ZL109合金,且随挤压力增加而提高。  相似文献   

3.
(TiB2+SiC)/ZL109复合材料的制备及其力学性能   总被引:5,自引:1,他引:5  
赵德刚  刘相法  边秀房 《铸造》2004,53(2):97-100
采用搅拌铸造和原位反应合成相结合的方法制备出(TiB2 SiC)/ZL109复合材料.对该复合材料的显微组织观测表明,SiC颗粒与TiB2颗粒分布较均匀.通过对材料的室温拉伸性能及硬度测试,发现TiB2、SiC两相颗粒增强AlSi基复合材料的硬度明显比单一颗粒增强复合材料提高,而其拉伸强度也略有提高,弥补了单一SiC颗粒增强铝基复合材料UTS降低的不足.(TiB2 SiC)/ZL109复合材料较基体合金ZL109硬度提高了34.8%.  相似文献   

4.
采用不同Al含量(0.20%、0.35%和0.50%,质量分数)的Cu-Al合金薄板内氧化法制备Cu-Al_2O_3薄板复合材料。对比分析了相同内氧化温度和时间下,不同Al含量的Cu-Al合金薄板内氧化制备出的Cu-Al_2O_3薄板复合材料的组织性能。并尝试采用Cu-Al_2O_3薄板复合材料重熔法制备Al_2O_3颗粒弥散分布的Cu-Al_2O_3块体复合材料。结果表明,Cu-Al_2O_3薄板复合材料内氧化层外部晶粒比内部晶粒细小;随着Al质量分数的增加,在相同的内氧化时间下,内氧化层的深度逐渐减小,内氧化层的内部晶粒逐渐粗化;内氧化后所得复合材料的Cu基体中弥散分布着大量的γ-Al_2O_3,γ-Al_2O_3粒径为10~30 nm,粒子间距为20~70 nm;复合材料中的γ-Al_2O_3强化了Cu基体,与合金相比复合材料表面硬度显著增加,从复合材料表面到内部硬度逐渐减小;Cu-Al_2O_3薄板复合材料重熔后Al_2O_3颗粒团聚且上浮;薄板复合材料重熔法制备Al_2O_3颗粒弥散分布的Cu-Al_2O_3块体复合材料不可行。  相似文献   

5.
通过原位合成法成功制备了亚微米级TiB_2颗粒增强ZL109复合材料,测量了不同颗粒含量复合材料的弹性模量和25~400℃的抗拉强度(UTS)。结果表明,复合材料的弹性模量随颗粒含量提高而提高,颗粒含量15%(质量分数,下同)时,复合材料的弹性模量比基体合金提高了32%;抗拉强度也明显高于基体合金,10%TiB_2 /ZL109复合材料在260℃时的强度比基体合金提高了105MPa。  相似文献   

6.
Al含量为0.50%(质量分数)的Cu-Al合金薄板在900℃下内氧化25 h制备Cu-Al_2O_3薄板复合材料,并用富集萃取法提取Cu-Al_2O_3复合材料中的Al_2O_3相。利用TEM分析了Cu-Al_2O_3薄板中的Al_2O_3相的种类、分布、与Cu基体的界面关系,用X射线衍射和TEM研究了萃取粉末的组成。结果表明,Cu-Al薄板内氧化法所得的Cu-Al_2O_3复合材料的析出相主要为γ-Al_2O_3,有少量的α-Al_2O_3和θ-Al_2O_3相存在。析出相Al_2O_3颗粒弥散分布在Cu基体上,且析出相γ-Al_2O_3与Cu基体完全共格;Cu-Al_2O_3薄板复合材料从表层至深约0.5 mm处,Al_2O_3颗粒粒径逐渐减小,从14 nm减小到5 nm,颗粒间距逐渐增大,从10 nm增加到15 nm。  相似文献   

7.
原位合成TiB2/ZL109复合材料的力学性能   总被引:2,自引:0,他引:2  
通过原位合成法成功制备了亚微米级TiB2颗粒增强ZL109复合材料,测量了不同颗粒含量复合材料的弹性模量和25~400℃的抗拉强度(UTS)。结果表明,复合材料的弹性模量随颗粒含量提高而提高,颗粒含量15%(质量分数,下同)时,复合材料的弹性模量比基体合金提高了32%;抗拉强度也明显高于基体合金,10%TiB2/ZL109复合材料在260℃时的强度比基体合金提高了105MPa。  相似文献   

8.
采用球磨混合ZrMgMo_3O_(12)粉与2024Al粉,制备了ZrMgMo_3O_(12)体积分数为10%的2024Al复合材料。并用SEM、XRD、维氏硬度计和热膨胀仪研究球磨工艺对复合材料的微观组织、硬度和热膨胀性能的影响。结果表明,随着球磨转速的增加或球磨时间的延长,ZrMgMo_3O_(12)颗粒在Al基体上趋向均匀分布,并与基体结合良好。这有利于ZrMgMo_3O_(12)的弥散强化,还改善了ZrMgMo_3O_(12)颗粒与基体界面间的载荷传递能力,增加了ZrMgMo_3O_(12)与2024Al基体间热膨胀系数的叠加效果,有利于降低复合材料的热膨胀系数。当球磨转速为200r/min、球磨4h时制备的复合材料硬度高于2024Al合金,热膨胀系数明显低于2024Al合金。  相似文献   

9.
原位合成TiB2/ZL109复合材料的热处理特性   总被引:5,自引:0,他引:5  
利用TiB2颗粒在共晶Al-Si基体中易于分散和生成颗粒超细的原理,用混合盐法制备了原位TiB2颗粒增强ZL109为基体的复合材料.颗粒加入后材料的硬度明显提高,如对颗粒质量分数为8.3%的复合材料材料T6处理后,其布氏硬度较基体ZL109提高了41.7%.对不同颗粒质量分数的复合材料固溶时效行为的研究表明,颗粒的加入,抑制了材料的固溶扩散进程,加速了复合材料的时效进程.用有效扩散理论分析了颗粒增强复合材料的固溶时效特性.  相似文献   

10.
基于SiO_2/A356反应体系,采用熔体直接反应法原位合成了不同体积分数的γ-Al_2O_3颗粒增强A356基复合材料。借助X射线衍射(XRD)、配有能谱仪(EDS)的扫描电镜(SEM)和金相显微镜(OM)对复合材料的物相和微观组织进行分析,并对其硬度进行测试。结果表明:反应生成了γ-Al_2O_3增强相,γ-Al_2O_3颗粒使得初生α相得到细化,并且颗粒含量越多组织越细;随着原位γ-Al_2O_3颗粒含量的增加,复合材料的硬度提高,当γ-Al_2O_3含量为20vol%时,复合材料的硬度达到113 HV,比基体提高25.6%。  相似文献   

11.
《铸造》2020,(8)
目前原位Al_2O_3颗粒对Al-Si合金组织性能的研究较多,但对过共晶Al-Si合金的研究较少。本研究通过在半固态温度区间下添加SiO_2粉末制备Al_2O_3(p)/Al-20Si复合材料,探究搅拌速率、SiO_2粉末添加量对Al-20Si合金的影响。研究结果表明:当搅拌速率为800 r/min时,Al_2O_3颗粒在基体中的分散效果最好;添加SiO_2粉末与Al基体发生反应生成的Al_2O_3颗粒主要分布于初生Si边界处,可显著抑制初生Si的生长,但当SiO_2添加量增加到7%时,生成的Al_2O_3颗粒出现了团聚现象。加入质量分数为5%的SiO_2粉末所制备的Al_2O_3(p)/Al-20Si复合材料组织中Al_2O_3颗粒均匀分布,硬度较基体合金提高了14%。  相似文献   

12.
采用半固态机械搅拌结合高速剪切工艺,以亚微米SiO_2颗粒与熔体原位反应制备了不同MgAl_2O_4体积分数(0.5%、1%、2%、3%)的亚微米MgAl_2O_4(P)/Al-Mg-Si复合材料,分析了该复合材料的显微组织及相组成,并研究了MgAl_2O_4体积分数对该复合材料显微组织及拉伸性能的影响。结果表明:亚微米SiO_2颗粒与基体合金原位反应生成粒径相似的亚微米MgAl_2O_4颗粒,基体则由α-Al、Mg_2Si及Si相组成。MgAl_2O_4颗粒对α-Al晶粒具有细化作用。随MgAl_2O_4体积分数的增加,该复合材料的抗拉强度提高,伸长率降低,断裂方式由基体脆韧混合断裂转化为基体脆韧混合断裂与增强颗粒团聚脆断相结合。  相似文献   

13.
废弃玻璃/铝基复合材料的组织和性能   总被引:13,自引:0,他引:13  
利用搅拌熔铸法将废弃玻璃颗粒加入到熔融的基体合金ZL105中,制备出了废弃玻璃/铝基复合材料,研究了复合材料的微观组织,力学性能及断裂机理,结果表明,玻璃颗粒较均匀地分布于基体中,与基体发生界面反应;与基体合金相比,废弃玻璃颗粒的加入提高了复合材料的硬度和抗拉强度,在低载荷下,复合材料的摩擦性能优于基体合金,由于玻璃颗粒形状较尖锐,尺寸大小不均,并存在加工缺陷,有碍于大幅度提高复合材料的性能。  相似文献   

14.
Al_2O_3颗粒增强Al-Mn合金基复合材料的制备及摩擦学性能   总被引:1,自引:0,他引:1  
采用搅拌铸造法制备了Al2O3颗粒增强Al-2%Mn合金基复合材料,对复合材料的显微组织、硬度和摩擦磨损性能进行了研究。结果表明:复合材料组织由Al基体、δ-Al2O3和MnAl6相组成,且Al2O3颗粒在铝基体中弥散分布。与原始铝基体相比,复合材料的布氏硬度提高了约70%。无论是干摩擦还是SO4.Cl-Na.Ca.Mg型弱碱性水溶液润滑摩擦情况下,复合材料的磨损量均显著低于铝基体。与铝锰合金相比,复合材料具有较低的冲刷腐蚀失重速率。复合材料具有优良的耐磨和耐蚀性。  相似文献   

15.
以Cu-Al水雾化合金粉末为原料,通过内氧化方法制备了Al_2O_3弥散强化铜基复合材料,研究了不同氧源系数下合金粉末内氧化的产物及复合材料的性能。结果表明,复合材料的强化相中,α-Al_2O_3含量较多,γ-Al_2O_3含量较少。只采用冷等静压-烧结的方法,不加任何后续处理,当氧源系数为1.1时,复合材料的显微硬度最高,可达120.8 HV,导电性可达82.4%IACS。  相似文献   

16.
对TiB_2/ZL101复合材料和ZL101基体合金进行激光焊对比研究,结果表明:TiB_2/ZL101复合材料对激光的吸收率大于ZL101基体合金,相同工艺参数焊接时复合材料的焊接深度大于基体合金。由于基体合金导热率较大,使得焊缝上部比复合材料焊缝较宽。在功率一定时,较快的焊接速度(3 m/min)使得基体合金焊缝组织为α相和分布在α相间的针列状共晶体复合组织;而在较慢的焊接速度(2 m/min)时,基体合金焊缝组织为α相和分布较均匀的块状或长针状共晶Si相。复合材料在较快的焊接速度(3 m/min)时,晶界壁较薄,仅有少量共晶Si存在,在较慢的焊接速度(2 m/min)时,晶界壁明显变厚,共晶Si相较多。通过测试两种不同焊接速度的ZL101合金焊缝硬度表明,焊缝硬度值均比母材高,但共晶Si以针状或块状存在的焊缝硬度值小于针列状形式存在的焊缝硬度值。  相似文献   

17.
本文采用恒温氧化实验方法,在900~1150℃下测试了NiAl-28Cr-6Mo共晶合金的氧化性能,分析了合金的氧化动力学,SEM观测了合金表面以及横截面的形貌。研究表明,NiAl-28Cr-6Mo共晶合金在900~1100℃下合金表面生成了连续的Al_2O_3氧化膜,具有较好的抗氧化性能;900~1000℃氧化膜主要由θ-Al_2O_3和Cr_2O_3组成,随着恒温氧化温度的升高,θ-Al_2O_3和Cr_2O_3减少,α-Al_2O_3增多,1100℃下的氧化膜表面则主要由细小、致密的α-Al_2O_3组成;氧化过程中,表面氧化膜存在着θ-Al_2O_3→α-Al_2O_3的相变过程;θ-Al_2O_3较α-Al_2O_3的保护性差导致1000℃合金氧化增重大于1050℃和1100℃;1150℃下共晶合金氧化膜发生剥落,没有形成完整的Al_2O_3氧化膜导致合金的抗氧化性能恶化,氧化增重迅速增加。  相似文献   

18.
选用AZ91D镁合金作为基体,平均粒径为50μm的SiC颗粒为增强相,采用机械搅拌法制备15vol%SiC_P/AZ91D复合材料。结果表明:通过观察复合材料摩擦磨损曲线,发现SiC颗粒均匀分布,在压缩温度为400℃时复合材料平均摩擦系数最小;比较2 h的AZ91D镁合金基体与复合材料的摩擦磨损曲线,复合材料的耐磨性较合金基体提高了20%,复合材料的平均摩擦系数较合金基体降低了15%。  相似文献   

19.
利用球磨预分散-搅拌铸造法制备纳米Al2O3/2024复合材料,并对所制备的铝基复合材料进行了显微组织及力学性能的研究。结果表明,经球磨预分散后,纳米颗粒团聚现象明显消除,纳米Al2O3呈单颗粒分散于Al粉表面;复合粉体添加法有效避免了超细增强颗粒和基体润湿性差和分散性较差的问题,实现纳米Al2O3颗粒均匀弥散分布于基体合金中;纳米Al2O3颗粒的加入显著提高基体合金的力学性能。与传统搅拌铸造相比,所制备的Al2O3/2024复合材料的抗拉强度、屈服强度和显微硬度分别提高了58%、59%和16%。  相似文献   

20.
高能超声波搅拌法制备SiCp/ZL101复合材料的研究   总被引:3,自引:0,他引:3  
莫立娥  程和法  李拥军  项苹 《铸造技术》2007,28(9):1188-1190
用浸渗法制备了SiCp/ZL101复合材料预制块,通过在预制块的稀释过程中施加高能超声波搅拌,获得了增强颗粒弥散均匀,基体合金组织细小的复合材料。实验结果表明,与机械搅拌法相比,高能超声波搅拌法可以显著改善增强颗粒与基体合金润湿性,使颗粒在基体中弥散分布,并可有效避免夹杂和气孔的产生,是一种制备SiCp/ZL101复合材料的理想方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号