首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Design and evaluation of prestressed concrete I-girder bridges is in large part dependent on the transverse load distribution characteristics and the dynamic load amplification, as well as service level, live load, and tensile stresses induced in the girders. This study presents the results of field tests conducted on three prestressed concrete I-girder bridges to obtain dynamic load allowance statistics, girder distribution factors (GDF), and service level stress statistics. The field-based data are also compared to approximate and numerical model results. Bridge response was measured at each girder for the passage of test trucks and normal truck traffic. The dynamic amplification is observed to be a strong function of peak static stress and a weak function of vehicle speed and is independent of span length, number of axles, and configuration. GDFs for one- and two-lanes are less than code specified GDFs. Results from the numerical grillage models agree closely with experimentally derived results for transverse distribution.  相似文献   

2.
A significant challenge facing motor carriers and engineers in this nation is the limitation of vehicle size and weight based on pavement and bridge capacity. However, the current demands of society and industry occasionally require a truck to carry a load that exceeds the size and weight of the legal limit. In these cases, engineering analysis is required before a permit is issued to ensure the safety of the structures and roadways on the vehicle's route. A truck with a wheel gauge larger than the standard 1.83 m (6 ft) gauge requires additional engineering effort because the wheel load girder distribution factors (GDFs) established by AASHTO cannot be used to accurately estimate the live load in the girders. In this study, the finite-element method is used to develop modification factors for the AASHTO flexure and shear GDFs to account for oversized trucks. The results of the analysis showed that the use of the proposed modification factors with the specification-based GDFs can help increase the allowable loads on slab-on-girder bridges.  相似文献   

3.
This paper presents the results of a parametric study that investigated the effect of multilanes and continuity on wheel load distribution in steel girder bridges. Typical one- and two-span, two-, three-, and four-lane, straight, composite steel girder bridges were selected for this study. The major bridge parameters chosen for this study were the span length, girder spacing, one- versus two-spans, and the number of lanes. These parameters were varied within practical ranges to study their influence on the wheel load distribution factors. A total of 144 bridges were analyzed using the finite-element method. The computer program, SAP90, was used to model the concrete slab as quadrilateral shell elements and the steel girders as space frame members. Simple supports were used to model the boundary conditions. AASHTO HS20 design trucks were positioned in all lanes of the one- and two-span bridges to produce the maximum bending moments. The calculated finite-element wheel load distribution factors were compared with the AASHTO and the National Cooperative Highway Research Program (NCHRP) 12-26 formulas. The results of this parametric study agree with the newly developed NCHRP 12-26 formula and both were, in general, less than the empirical AASHTO formula (S∕5.5) for longer span lengths [>15.25 m (50 ft)] and girder spacing >1.8 m (6 ft). This paper demonstrates that the multiple lane reduction factors are built into the newly developed distribution factors for steel girder bridges that were presented in the NCHRP 12-26 final report. It should be noted that AASHTO LRFD contains a similar expression that results in a value that is 50% of the value in the equations developed as a part of NCHRP 12-26. This is due to the fact that AASHTO LRFD consider the entire design truck instead of half-truck (wheel loads) as the case in the NCHRP 12-26 report and the AASHTO Standard Specifications for Highway Bridges. Therefore, this paper supports the use of the new distribution factors for steel girder bridges developed as a part of NCHRP 12-26 and consequently the distribution factors presented in the AASHTO LRFD Bridge Design Specifications.  相似文献   

4.
This paper presents the procedure and results of field tests that were performed on two simply supported steel I-girder bridges to assess girder distribution and impact factors. The measurements were performed under normal truck traffic. Strain data were taken from bottom flanges of girders in the middle of a span. Additional strain data were obtained under passes of a control truck with known weight and configuration. A computerized data acquisition technique enabled selective recording of the significant blocks of the strain data under normal traffic. Strains were measured for two consecutive days on each bridge. Measured data consist of strain blocks from approximately 900 trucks. The strain records were filtered with a lowpass digital filter to remove the dynamic components and to obtain an equivalent static strain. The data were further processed to obtain statistical parameters (mean and standard deviation) of the girder distribution and impact factors. The results were compared with the values calculated according to American Association of State Highway and Transportation (AASHTO) methods. Measured girder distribution factors are lower than AASHTO values. Measured impact factors are well below AASHTO values.  相似文献   

5.
This paper presents findings of field tests and analysis of two conventionally reinforced concrete (CRC) deck girder bridges designed in the 1950s. The bridges are in-service and exhibit diagonal cracks. Stirrup strains in the bridge girders at high shear regions were used to estimate distribution factors for shear. Impact factors based on the field tests are reported. Comparison of field measured responses with AASHTO factors was performed. Three-dimensional elastic finite-element analysis was employed to model the tested bridges and determine distribution factors specifically for shear. Eight-node shell elements were used to model the decks, diaphragms, bent caps, and girders. Beam elements were used to model columns under the bent caps. The analytically predicted distribution factors were compared with the field test data. Finally, the bridge finite-element models were employed to compare load distribution factors for shear computed using procedures in the AASHTO LRFD and Standard Specifications.  相似文献   

6.
The main objective of this study is to evaluate the effects of parapets on the live-load response of slab-on-girder steel bridges subjected to superload vehicles and the effects of these loads on the parapets. A superload is a special permit truck that exceeds the predefined weight limitation. The presence of parapets can result in reduced girder distribution factors (GDFs) for critical girders, and this reserve strength can be considered for passage of a superload truck. This reduction is investigated, as well as the effects of discontinuous parapets and the capacity of parapets. Two steel bridges with significantly different geometric proportions were analyzed to evaluate the sensitivity of the structure to the effects of parapets. It was found that the GDFs can be decreased by as much as 30%, depending on the stiffness of the girders and the transverse truck position if the parapets are included in the analysis. The axial forces and bending moments resisted by the parapets were compared with the capacity of the parapets. The parapets and their connection with the deck were found to have adequate strength to accommodate the demand imposed by the superload trucks included in the study. For the discontinuous parapets, the open joint was determined to be acting like a notch, which increases the bottom flange stresses in the positive moment region and the tensile deck stresses in the negative moment region.  相似文献   

7.
This paper describes the implementation and evaluation of a long-term strain monitoring system on a three-span, multisteel girder composite bridge located on the interstate system. The bridge is part of a network of bridges that are currently being monitored in Connecticut. The three steel girders are simply supported, whereas the concrete slab is continuous over the interior supports. The bridge has been analyzed using the standard AASHTO Specifications and the analytical predictions have been compared with the field monitoring results. The study has included determination of the location of the neutral axes and the evaluation of the load distributions to the different girders when large trucks cross the bridge. A finite-element analysis of the bridge has been carried out to further study the distribution of live load stresses in the steel girders and to study how continuity of the slabs at the interior joints would influence the overall behavior. The results of the continuous data collection are being used to evaluate the influence of truck traffic on the bridge and to establish a baseline for long-term monitoring.  相似文献   

8.
This paper presents the results of a parametric study related to the wheel load distribution in one-span, simply supported, multilane, reinforced concrete slab bridges. The finite-element method was used to investigate the effect of span length, slab width with and without shoulders, and wheel load conditions on typical bridges. A total of 112 highway bridge case studies were analyzed. It was assumed that the bridges were stand-alone structures carrying one-way traffic. The finite-element analysis (FEA) results of one-, two-, three-, and four-lane bridges are presented in combination with four typical span lengths. Bridges were loaded with highway design truck HS20 placed at critical locations in the longitudinal direction of each lane. Two possible transverse truck positions were considered: (1) Centered loading condition where design trucks are assumed to be traveling in the center of each lane; and (2) edge loading condition where the design trucks are placed close to one edge of the slab with the absolute minimum spacing between adjacent trucks. FEA results for bridges subjected to edge loading showed that the AASHTO standard specifications procedure overestimates the bending moment by 30% for one lane and a span length less than 7.5 m (25 ft) but agrees with FEA bending moments for longer spans. The AASHTO bending moment gave results similar to those of the FEA when considering two or more lanes and a span length less than 10.5 m (35 ft). However, as the span length increases, AASHTO underestimates the FEA bending moment by 15 to 30%. It was shown that the presence of shoulders on both sides of the bridge increases the load-carrying capacity of the bridge due to the increase in slab width. An extreme loading scenario was created by introducing a disabled truck near the edge in addition to design trucks in other lanes placed as close as possible to the disabled truck. For this extreme loading condition, AASHTO procedure gave similar results to the FEA longitudinal bending moments for spans up to 7.5 m (25 ft) and underestimated the FEA (20 to 40%) for spans between 9 and 16.5 m (30 and 55 ft), regardless of the number of lanes. The new AASHTO load and resistance factor design (LRFD) bridge design specifications overestimate the bending moments for normal traffic on bridges. However, LRFD procedure gives results similar to those of the FEA edge+truck loading condition. Furthermore, the FEA results showed that edge beams must be considered in multilane slab bridges with a span length ranging between 6 and 16.5 m (20 and 55 ft). This paper will assist bridge engineers in performing realistic designs of simply supported, multilane, reinforced concrete slab bridges as well as evaluating the load-carrying capacity of existing highway bridges.  相似文献   

9.
The dynamic response of highway bridges subjected to moving truckloads has been observed to be dependent on (1) dynamic characteristics of the bridge; (2) truck configuration, speed, and lane position on the bridge; and (3) road surface roughness profile of the bridge and its approach. Historically, truckloads were measured to determine the load spectra for girder bridges. However, truckload measurements are either made for a short period of time [for example, weigh-in-motion (WIM) data] or are statistically biased (for example, weigh stations) and cost prohibitive. The objective of this paper is to present results of a 3D computer-based model for the simulation of multiple trucks on girder bridges. The model is based on the grillage approach and is applied to four steel girder bridges tested under normal truck traffic. Actual truckload data collected using a discrete bridge WIM system are used in the model. The data include axle loads, truck gross weight, axle configuration, and statistical data on multiple presence (side by side or following). The results are presented as a function of the static and dynamic stresses in each girder and compared with code provisions for dynamic load factor. The study provides an alternate method for the development of live-load models for bridge design and evaluation.  相似文献   

10.
Composite concrete-steel spread (multispine) box girder bridges remain one of the most common types constructed. Current design practices in North America recommend few analytical methods for the design of such bridges in simply supported construction. However, the effects of continuous construction have not been dealt with fully. In designing a continuous bridge, it is important to determine the maximum negative and positive stresses, maximum reactions, and shears in the bridge subjected to various loadings. This paper presents an extensive parametric study using a finite-element model in which 60 continuous bridge prototypes of various geometries, each subjected to various loading conditions, are analyzed for the distribution of flexural stresses, deflection, shears, and reactions. The parameters considered in the study are span length, number of spread boxes, and number of lanes. Distribution factors for maximum flexural stresses, deflection, shears, and reactions, suitable for design, are deduced for AASHTO truck loading. Results from tests on five box girder bridge models verify the finite-element model. A design example is presented to illustrate the use of the deduced formulas for the distribution factors.  相似文献   

11.
The main objective of this research was to study the effects of different specified trucks on bridge rating with the load and resistance and factor rating (LRFR) procedure. Twelve specified trucks were selected for this study, which include one AASHTO design truck, three AASHTO legal trucks, and eight state legal trucks. These rating trucks were applied on 16 selected Tennessee Dept. of Transportation bridges to obtain the LRFR ratings. The selected bridges covered four commonly used bridge types, including prestressed I-beam bridges; prestressed box beam bridges; cast-in-place T-beam bridges; and steel I-beam bridges. The research results revealed that (1) LRFR AASHTO legal load ratings factors were enveloped by the LRFR HL-93 truck ratings factors, thereby confirming the validity of the LRFR tiered approach with regard to AASHTO legal loads; (2) the lighter state legal trucks were enveloped by the HL-93 loads, whereas the heavier state trucks with closer axle spacing typically resulted in load ratings that governed over the HL-93 loads; and (3) the bridges with both high average daily truck traffic and short spans were more likely to be governed by state legal load ratings instead of HL-93 load ratings.  相似文献   

12.
The use of horizontally curved composite multiple-box girder bridges in modern highway systems is quite suitable in resisting torsional and warping effects induced by highway curvatures. Bridge users react adversely to vibrations of a bridge and especially where torsional modes dominate. In this paper, continuous curved composite multiple-box girder bridges are analyzed, using the finite-element method, to evaluate their natural frequencies and mode shapes. Experimental tests are conducted on two continuous twin-box girder bridge models of different curvatures to verify and substantiate the finite-element model. Empirical expressions are deduced from these results to evaluate the fundamental frequency for such bridges. The parameters considered herein are the span length, number of lanes, number of boxes, span-to-radius of curvature ratio, span-to-depth ratio, end-diaphragm thickness, number of cross bracings, and number of spans.  相似文献   

13.
The present study is designed to determine the effect of major parameters on maximum total bending moments of curved girders, establish the relationship between key parameters and girder distribution factors (GDFs), and develop new approximate distribution factor equations. A level of analysis study using three numerical models was performed to establish an appropriate numerical modeling method on the basis of field test results. A total of 81 two-traffic lane curved bridges were analyzed under HL-93 loading. Two approximate GDF equations were developed based on the data obtained in this study: (1) a single GDF based on total girder normal stress; and (2) a combined GDF treating bending and warping normal stress separately. The two equations were developed based on both an averaged coefficient method and regression analysis. A goodness-of-fit test revealed that the combined GDF model developed by regression analysis best predicted GDFs. The present study demonstrated that radius, span length, cross frame spacing and girder spacing most significantly affect GDFs. The proposed GDF equations are expected to provide a more refined live load analysis for preliminary design.  相似文献   

14.
The paper presents an experimental study of the actual dynamic effects for a preselected typical highway bridge. Knowledge of the dynamic impact factors is important for accurate determination of the ultimate load capacity and performance assessment of constructed bridges. Static and dynamic field tests were performed on a two-lane concrete highway bridge built in 1999 on U.S. 90 in northwest Florida. During the tests, one or two fully loaded trucks crossed over the bridge, which was instrumented with strain gauges, accelerometers, and displacement transducers. A wooden plank was placed across the lanes for some runs to trigger extensive dynamic vibration and to simulate poor road surface conditions. Data collected from the tests were used for comprehensive assessment of the bridge under dynamic loading. Impact factors obtained from the tests with higher speeds were found larger than corresponding values recommended by bridge codes. Analysis revealed that stiff vehicle suspension, road surface imperfection, and “bouncing” of the truck loading contributed to the high impact factors. Experimental data were also used for validation of the finite-element models developed for the vehicle–bridge system.  相似文献   

15.
This paper presents simple relationships for calculating live-load distribution factors for glued-laminated timber girder bridges with glued-laminated timber deck panels. Analytical models were developed using the Ansys 113 finite-element program, and the results were validated using recorded data from four in-service timber bridges. The effects of the bridge span length, the spacing between girders, and the bridge width on the distribution of the live load were investigated by using the validated models. The live-load distribution factors obtained from the field test and the analytical models were compared with those obtained using the AASHTO LRFD Bridge Design Specifications2 live-load distribution relations. The comparison showed that the live-load distribution factors obtained by using the AASHTO LRFD Bridge Design Specifications2 were conservative. For this reason, statistical methods were used to develop accurate relationships that can be used to calculate the live-load distribution factors in the design of glued-laminated girder bridges.  相似文献   

16.
Since the first edition of the AASHTO Guide Specifications for Horizontally Curved Steel Girder Highway Bridges was published in 1980, there have been two more editions including many revisions to the specifications. Some changes were based on valid research results and others were based on limited or uncertain research results and information. The current edition of the specifications contains provisions that may result in unreasonably conservative load capacity ratings. In this paper, the results of field tests and analyses conducted on the Veterans’ Memorial curved steel-box girder bridge are discussed. Test and analytical results show: (1) current AASHTO guide specifications regarding the first transverse stiffener spacing at the simple end support of a curved girder may be too conservative for bridge load capacity ratings; (2) current AASHTO guide specifications may greatly overestimate the dynamic loadings of curved box girder bridges with long span lengths; and (3) a plane grid finite-element model of about 20 elements per span in the longitudinal direction can be used to analyze curved multigirder bridges with external bracings located only over supports. The research results are instructive and applicable to bridge design and bridge load-rating activities.  相似文献   

17.
The results from a parametric study on the impact factors for 180 curved continuous composite multiple-box girder bridges are presented. Expressions for the impact factors for tangential flexural stresses, deflection, shear forces and reactions are deduced for AASHTO truck loading. The finite-element method was utilized to model the bridges as three-dimensional structures. The vehicle axle used in the analysis was simulated as a pair of concentrated forces moving along the concrete deck in a circumferential path with a constant speed. The effects of bridge configurations, loading positions, and vehicle speed on the impact factors were examined. Bridge configurations included span length, span-to-radius of curvature ratio, number of lanes, and number of boxes. The effect of the mass of the vehicle on the dynamic response of the bridges is also investigated. The data generated from the parametric study and the deduced expressions for the impact factors would enable bridge engineers to design curved continuous composite multiple-box girder bridges more reliably and economically.  相似文献   

18.
The conventional analysis and design of highway bridges ignore the contribution of sidewalks and∕or railings in a bridge deck when calculating the flexural strength of superstructures. The presence of sidewalks and railings or parapets acting integrally with the bridge deck have the effect of stiffening the outside girders and attracting more load while reducing the load effects in the interior girders. This paper presents the results of a parametric study showing the influence of typical sidewalks and railings on wheel load distribution as well as on the load-carrying capacity of highway bridges. A typical one-span, two-lane, simply supported, composite steel girder bridge was selected in order to investigate the influence of various parameters such as: span length, girder spacing, sidewalks, and railings. A total of 120 bridges were analyzed using three-dimensional finite-element analysis. American Association of State Highway and Transportation Officials (AASHTO) HS20 design trucks were positioned in both lanes to produce the maximum moments. The finite-element analysis results were also compared with AASHTO wheel load distribution factors. The AASHTO load and resistance factor design (LRFD) wheel load distribution formula correlated conservatively with the finite-element results and all were less than the typical empirical formula (S∕5.5). The presence of sidewalks and railings were shown to increase the load-carrying capacity by as much as 30% if they were included in the strength evaluation of highway bridges.  相似文献   

19.
Horizontally curved, steel girder bridges are often used in our modern infrastructural system. The curve in the bridge allows for a smother transition for traffic, which creates better road travel. However, some of the disadvantages of horizontally curved bridges are that they are more difficult to analyze, design, and sometimes construct in comparison to conventional straight bridges. This study focuses on a three-span, curved steel I-girder bridge which was tested under three boundary condition states to determine it’s response to live load. The measured live-load strains were used to calibrate a finite-element model. The finite-element design moments and distribution factors for the three condition states were then compared with the results based on the V-load method. These different boundary conditions provided the researchers a unique opportunity to evaluate the impact that these changes had on the bridges behavior. It was found that while the V-load method produced positive bending moments that were close to the finite-element moments for some of the girders, this was a result of the V-load moment being unconservative and the distribution factor being conservative.  相似文献   

20.
A field load test is an essential way to understand the behavior and fundamental characteristics of newly constructed bridges before they are allowed to go into service. The results of field static load tests and numerical analyses on the Qingzhou cable-stayed bridge (605?m central span length) over the Ming River, in Fuzhou, China are presented in the paper. The general test plan, tasks, and the responses measured are described. The level of test loading is about 80–95% of the code-specified serviceability load. The measured results include the deck profile, deck and tower displacements, and stresses of steel-concrete composite deck. A full three-dimensional finite-element model is developed and calibrated to match the measured elevations of the bridge deck. A good agreement is achieved between the experimental and analytical results. It is demonstrated that the initial equilibrium configuration of the bridge plays an important role in the finite-element calculations. Both experimental and analytical results have shown that the bridge is in the elastic state under the planned test loads, which indicates that the bridge has an adequate load-carrying capacity. The calibrated finite-element model that reflects the as-built conditions can be used as a baseline for health monitoring and future maintenance of the bridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号