首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
福建某微细粒嵌布磁铁矿石采用现场的磨选流程处理,精矿铁品位达不到产品质量要求。现场粗精矿矿物性质分析结果表明,其单体磁铁矿物约占60%,磁性铁占有率为95.13%,适宜采用单一弱磁选工艺处理。在进行了弱磁选场强和中矿再磨细度条件试验后,进行了筛分分级-筛下2段弱磁精选-筛上中矿再磨-磨矿产品2段弱磁精选流程试验,最终可获得铁品位为64.18%、铁回收率为95.41%的铁精矿。试验流程是处理该矿石的简洁而高效的流程。  相似文献   

2.
采用预先分级、干式磁选抛废、粗磨磁选、粗精矿再磨再磁选的工艺流程处理大顶铁矿原生矿,提高了原矿处理量,降低了磨矿成本,获得铁精矿品位65.54%、铁回收率94.11%的技术指标.  相似文献   

3.
针对某铁矿石铁含量较低、铁矿物嵌布粒度较细的特点,进行了磨矿-1粗1精弱磁选-细筛筛分-筛下弱磁选-筛上返回再磨、磨矿-1粗1精弱磁选-精矿再磨机单独磨矿-弱磁精选-细筛筛分-筛下弱磁选-筛上返回再磨机再磨、磨矿-1粗1精弱磁选-细筛筛分-筛上单独再磨-返回细筛筛分-筛下弱磁选3种流程的磨选工艺条件试验,并对细筛工艺进行了优化。试验结果表明:采用磨矿-1粗1精弱磁选-细筛筛分-筛上单独再磨-返回细筛筛分-筛下弱磁选流程处理此矿石,可获得铁品位为68.64%、回收率为85.02%的合格铁精矿。  相似文献   

4.
采用预先分级、干式磁抛废、粗磨磁选、粗精矿再磨再磁选的工艺流程处理大顶铁矿原生矿,提高了原矿处理量,降低了磨矿成本,获得铁精矿品位65.54%、铁回收率94.11%的技术指标。  相似文献   

5.
吴熙群  李成必  刘金贵 《矿冶》2002,11(3):35-38,21
某含磷磁铁矿石中磷和铁的品位都很低 ,且磁性铁矿物含量只占总铁的 60 %。矿石经磁滑轮预选可抛除 1/3的尾矿 ,预选粗精矿磨至 -0 0 74mm占 60 % ,经浮选可获得含P2 O53 7 2 8%的磷精矿。选磷尾矿通过磁选粗选、磁粗精矿再磨后磁选精选 ,可获得含铁为 65 2 1%的铁精矿 ,磁性铁回收率对原矿中磁性铁为 85 3 9% ,对磁滑轮预选粗精矿中磁性铁为 94 5 6%。  相似文献   

6.
太和铁矿矿石为钒钛磁铁矿,现场选铁采用两段阶段磨矿、阶段磁选工艺流程,二段再磨量大,成本高,且最终精矿铁品位仅能基本满足大于55%的质量要求。在实验室模拟现场流程制备出一段精矿,采用磁筛对其进行再磨后和再磨前的精选试验,考察利用磁筛提高最终精矿铁品位或减少二段再磨量的可能性。结果表明:再磨后的一段精矿经磁筛精选,最终精矿铁品位未能提高;一段精矿再磨前直接经磁筛精选,可预先获得一部分铁品位为56%以上的合格精矿,从而减少约60%的再磨量。  相似文献   

7.
针对梅山铁矿弱磁精矿品位低的问题,采用矿物解离分析仪测定了矿样中各矿物的含量和铁矿物的嵌布粒度。研究结果表明:弱磁精矿中含有8.184%的低品位菱铁矿;磨矿产品均匀性不够且磨矿分级效率较差,同时存在过磨和欠磨现象,粗粒级中与以石英为主的硅酸盐矿物连生体多;梅山铁矿1粗1扫弱磁选别工艺存在缺陷,没有弱磁精选作业,选别过程中磁性矿物机械夹杂严重,较多的单体硅酸盐矿物进入弱磁精矿。通过采用细磨弱磁1粗1扫、1中磁立环高梯度扫选工艺,利用梅山铁矿现有磁选生产流程工业试验,在弱磁给矿铁品位为48.56%时,精矿产率为60.79%、铁品位为64.17%、回收率为80.33%、SiO_2含量为2.58%,细磨提铁降硅效果明显,得到了铁品位63%以上的球团铁精矿。  相似文献   

8.
为确定内蒙古某微细粒、低品位、难选铁矿石的选矿工艺流程,在对矿石性质分析的基础上进行了选矿试验。结果表明,采用磨矿-1粗1精弱磁选-弱磁选尾矿再磨后1粗1精高梯度强磁选流程处理该矿石,可获得铁品位为65.30%、回收率为48.57%的弱磁选精矿,以及铁品位为60.25%、回收率为32.37%的高梯度强磁选精矿,综合精矿铁品位为63.18%、回收率为80.94%。  相似文献   

9.
张韶敏 《现代矿业》2013,29(10):108-109
以承德地区某钒钛磁铁矿选铁尾矿为研究对象,进行了铁、钛的回收试验。结果表明,在磨矿细度为-0.074 mm占55%条件下,经过磁场强度为100 kA/m的一段弱磁选、两段磁选柱精选,可以获得TFe品位为60.33%、回收率为3.70%的铁精矿;选铁尾矿经“一段中磁预富集—中磁精矿再磨—二段中磁预富集”后得到的磁选钛精矿经过1粗2扫3精的浮选闭路试验,可以获得TiO2品位为41.02%、回收率为36.10%的钛精矿。  相似文献   

10.
西北某难选铁矿石中主要铁矿物为磁铁矿和镜铁矿,其中磁铁矿与镜铁矿、镜铁矿与石英嵌布关系密切。对该矿石进行了磨选工艺技术条件研究,结果表明,采用磨矿-1粗1精弱磁选-强磁粗选-强磁粗精矿再磨-强磁精选流程处理,可以获得铁品位为66.39%、回收率为40.94%的弱磁精矿和铁品位为63.41%、回收率为37.27%的强磁精矿,综合精矿铁品位为64.95%、回收率为78.21%。  相似文献   

11.
针对海南某铁矿山不断开采、矿石品质下降的问题,提出采用铁矿石分质分选的新思路,开展了弱磁选富集磁铁矿、反浮选回收赤铁矿的工艺流程试验。结果表明:原矿经过磨矿(-0.074mm占54.21%)—一段弱磁选(79.58k A/m)—弱磁精矿再磨(-0.045mm占63.82%)—二段弱磁选(79.58k A/m)获得铁品位62.42%、回收率19.28%的弱磁精矿,对一段弱磁尾矿经强磁选获得的强磁精矿与二段弱磁尾矿合并为混磁精矿,混磁精矿再磨至-0.045mm占85.52%,以淀粉为抑制剂、Ca Cl2为调整剂、Ts-2为捕收剂,经1粗1精3扫闭路反浮选,获得铁品位60.60%、回收率36.23%的浮选精矿。弱磁精矿和浮选精矿中铁矿物分别主要以磁铁矿和赤铁矿形式存在,主要脉石矿物皆为石英。  相似文献   

12.
某选厂选铜尾矿磁选选铁工艺较简单,矿石中磁黄铁矿含量较高,导致所得铁精矿硫含量过高。在对其进行工艺矿物学研究的基础上,采用磁选—铁粗精矿再磨—磁选—浮选脱硫工艺流程进行试验,结果表明:最终可获得含铁68.73%,含硫0.82%,回收率为32.46%的铁精矿。提高了铁精矿品位,并降低了铁精矿中的硫含量。  相似文献   

13.
浮铜尾矿回收铁的试验研究   总被引:2,自引:1,他引:1  
针对某铜矿山尾矿库堆存的尾矿,经过浮选处理后的浮选尾矿产品进行回收铁的试验研究。在工艺矿物学研究的基础上,采用弱磁选—强磁选—粗精矿再磨精选工艺流程,闭路试验获得了铁品位44.15%、铁回收率52.45%的铁精矿。  相似文献   

14.
《矿冶》2018,(6)
某铁矿石中的铁以磁铁矿为主,含部分黄铁矿、磁黄铁矿等铁矿物。磁黄铁矿和黄铁矿的存在,致使在采用直接磁选时,铁精矿含硫较高。针对矿石中的磁铁矿物和含硫矿物的特性特点,进行了详细的多方案试验研究。结果表明,原矿粗磨磁选抛尾—磁粗精矿再磨浮选脱硫—浮选脱硫尾矿磁精选联合流程适合处理该铁矿。该技术可为同类型磁铁矿山脱硫提供技术支持。  相似文献   

15.
辽宁某开采深度为1 400 m的深部铁矿石铁品位为37.03%,铁主要以磁性铁及赤褐铁矿的形式存在,分布率分别为72.83%、22.52%,硫、磷等有害元素含量很低。为开发利用该矿石,对其进行了弱磁选-强磁选-混磁精矿反浮选工艺研究。结果表明:矿样磨细至-0.043 mm占75%后,经1段弱磁选-2段强磁选,可得到铁品位47.50%、回收率95.01%的混磁精矿;混磁精矿再磨至-0.038 mm占95%后,以淀粉为抑制剂、RS-3为捕收剂、经1粗1精2扫阳离子反浮选流程处理,可获得铁品位67.21%、回收率85.03%的精矿产品。采用磁选-反浮选流程处理该深部铁矿石获得了较为理想的选别指标,对类似复杂难选深部铁矿石选矿具有借鉴意义。  相似文献   

16.
针对霍邱周油坊铁矿的特点,为探讨螺旋溜槽、弱磁选和强磁选3种工艺组合对该矿中镜铁矿和磁铁矿的回收效果,在磨矿细度为-0.074 mm 50%的条件下通过弱磁-螺旋溜槽-强磁选流程、弱磁-强磁-螺旋溜槽流程和螺旋溜槽-弱磁-强磁选流程3种不同方案研究适合周油坊铁矿粗磨阶段的选矿流程,试验最终确定1段粗磨选矿作业采用原矿粗磨-弱磁-强磁抛尾-混合精矿螺旋溜槽重选流程,并获得了产率为19.21%,铁品位为66.01%的重选精矿,指标较合理。  相似文献   

17.
安徽某铜矿尾矿的选铁降硫试验研究   总被引:1,自引:0,他引:1  
根据安徽某铜矿尾矿的矿石性质,采用磁选-铁粗精矿分级-粗粒精矿再磨-磁选-浮选流程,试验结果表明,可获得产率54.75%,铁品位67.59%,回收率84.74%,含硫0.047%的铁精矿。提高了该尾矿的铁精矿品位和回收率,并降低了铁精矿中的硫含量。  相似文献   

18.
针对国外某铁矿石晶体嵌布粒度极细及难磨易选的性质特点,对该矿石进行了阶段磨矿—弱磁选—反浮选得精—中矿再磨—弱磁选工艺流程试验。试验结果表明:当2段磨矿细度为-0.076 mm 90%时,弱磁精选精矿采用反浮选可提前获得铁品位为68.50%左右的铁精矿,反浮选尾矿经再磨—弱磁选后还可获得铁品位为67%以上的铁精矿,获得的最终综合精矿铁品位为68.09%、铁回收率为70.32%。  相似文献   

19.
研究某镍尾矿选矿回收铁的过程。结果表明,该镍尾矿经磁选—铁粗精矿再磨—磁选及铁精矿浮选降硫工艺处理后,可得产率3.03%、总铁品位65.20%、总铁回收率19.79%、含硫0.26%的合格铁精矿及硫品位22.50%的硫精矿。  相似文献   

20.
俄罗斯米哈伊洛夫斯克采选公司处理赤铁矿-磁铁矿铁荚岩矿石.现有的选矿工艺流程包括4段破碎,干式磁选、4段球磨和5段湿式弱磁选.在选矿厂设计中规定对湿式弱磁选尾矿再磨后用阴离子捕收荆浮选从其中回收赤铁矿.设计获得的赤铁矿浮选精矿铁品位为58.4%.但选矿厂只生产磁铁矿精矿,其中铁回收率仅为57%.选矿厂尾矿铁品位为26%~28%.本工作提出采用强磁选-浮选和浮选-强磁选方案从选矿厂弱磁选尾矿中回收赤铁矿精矿.扩大试验结果表明,这两个流程均可获得铁品位为62.7%~61.5%,对原矿铁回收率为8%~9%的赤铁矿精矿.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号