首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过分析磷石膏蒸压后样品的物相组成、相对结晶度、烘干抗压强度、微观形貌,研究了蒸压温度、保温时间、液固比、杂质等因素对磷石膏蒸压制备α-半水石膏的影响。结果表明:磷石膏蒸压后所得样品的烘干抗压强度与α-半水石膏晶体的相对结晶度呈正相关关系;在蒸压温度为130℃、保温时间为3~5 h、液固质量比为0.25条件下,所得α-半水石膏的相对结晶度高、烘干抗压强度大、晶体微观形貌完整且长径比小;磷石膏中的杂质会对蒸压样品的力学强度产生影响,将磷石膏水洗处理后,在蒸压温度为130℃、保温时间为3 h、液固质量比为0.25条件下,可制得2 h抗折强度为7.3 MPa、烘干抗压强度为32.8 MPa的α-半水石膏,该α-半水石膏符合JC/T 2038—2010《α型高强石膏》α30强度等级的要求。  相似文献   

2.
探究四川省某地区磷石膏的浸出液离子成分、浸出液中磷的赋存形态,考察了环境因子对不同年龄磷石膏中磷、氟浸出的影响。结果表明,磷石膏浸出液是一种成分较为复杂的强酸性液体,主要含有SO_4(2-)、Ca(2-)、Ca(2+)、SO_4(2+)、SO_4(3-)、F(3-)、F-、 Mg-、 Mg(2+)、Al(2+)、Al(3+)、Zn(3+)、Zn(2+)等阴阳离子;磷石膏浸出液中大部分磷以可溶性无机磷形态赋存,而颗粒态磷和有机磷较少;高温、低pH值环境、大粒径和较短的堆放时间均有利于磷和氟的释放;磷石膏的磷、氟释放量与水土比成正相关关系,在1 500∶1时接近平衡释放量;新磷石膏中磷和氟的释放量始终高于旧磷石膏。该研究可为磷石膏堆场的污染控制和有效管理提供理论依据。  相似文献   

3.
通过分析磷石膏蒸压后样品的物相组成、相对结晶度、烘干抗压强度、微观形貌,研究了蒸压温度、保温时间、液固比、杂质等因素对磷石膏蒸压制备α-半水石膏的影响。结果表明:磷石膏蒸压后所得样品的烘干抗压强度与α-半水石膏晶体的相对结晶度呈正相关关系;在蒸压温度为130 ℃、保温时间为3~5 h、液固质量比为0.25条件下,所得α-半水石膏的相对结晶度高、烘干抗压强度大、晶体微观形貌完整且长径比小;磷石膏中的杂质会对蒸压样品的力学强度产生影响,将磷石膏水洗处理后,在蒸压温度为130 ℃、保温时间为3 h、液固质量比为0.25条件下,可制得2 h抗折强度为7.3 MPa、烘干抗压强度为32.8 MPa的α-半水石膏,该α-半水石膏符合JC/T 2038—2010《α型高强石膏》α30强度等级的要求。  相似文献   

4.
以云南安宁某磷肥厂的磷石膏为原料,以此来制备磷石膏基建筑石膏.采用Na2SO4、尿素(CO(NH2)2)、Al2(SO4)3、Al(OH)3四种增强剂,考察不同增强剂的掺量对磷石膏基建筑石膏的凝结时间、抗折抗压强度的影响.结果表明:当Na2SO4掺入量为0.5wt%时,试件整体强度最高,改性建筑石膏试件2h抗压强度提升7.84%,绝干抗压强度提升11.78%;当Al(OH)3掺入量为0.7wt%时,试件整体强度最高,改性磷石膏基建筑石膏试件2h抗压强度提升11.32%,绝干抗压强度提升12.36%;当CO(NH2)2掺入量为0.5wt%时,试件整体强度最高,改性磷石膏基建筑石膏砌块2h抗压强度提升12.34%,绝干抗压强度提升14.22%;当Al2(SO4)3掺入量为1.5wt%时,试件整体强度最高,改性磷石膏基建筑石膏试件抗折强度提升较小,2h抗压强度提升17.62%,绝干抗压强度提升19.29%.改性效果最好的增强剂为硫酸铝,掺入量为1.5wt%;通过对掺杂增强剂后石膏试件SEM表征,初步对石膏改性过程进行了机理分析,为磷石膏基建筑石膏改性提供了理论依据,研究成果具有较好的应用价值.  相似文献   

5.
提高磷石膏基水泥早期性能的研究   总被引:3,自引:0,他引:3  
通过磷石膏预处理和添加超细硅酸盐水泥熟料的方法,对提高磷石膏基水泥早期性能进行了研究,并通过XRD、SEM对其水化过程和机理进行了探讨。结果表明,磷石膏经钢渣预处理,或采用超细熟料粉作为碱性激发剂,均能显著改善磷石膏基水泥的早期强度和凝结特性,两种措施同时采用时,能制备出3d抗压强度超过10MPa,28d抗压强度达49MPa以上的磷石膏基水泥。钢渣固结或固化了磷石膏中缓凝的可溶性杂质,超细粉磨使熟料自身水化加快并同时促进了矿渣水化,是磷石膏基水泥早期水化性能提高的原因。  相似文献   

6.
磷石膏是湿法磷酸生产中的副产物之一.本文介绍了磷石膏中所包含杂质的种类和影响.杂质可划分为磷杂质,氟杂质,有机物杂质和其他杂质;磷杂质会降低晶体间的结合力,阻碍磷石膏的转化,同时会降低磷石膏在建筑中的水化率,氟杂质可加快建筑石膏的凝结速度,使得二水石膏晶体粗化,有机物杂质使磷石膏胶结材料需水量增加,其他杂质会对人身体和环境造成破坏.以及介绍了不同杂质的除去方法,化学法、物理法、热处理法.并归纳了主要方法的优缺点.  相似文献   

7.
磷石膏水洗净化试验及工艺   总被引:1,自引:0,他引:1  
1磷石膏杂质含量对其应用性能的影响磷石膏与天然石膏相比含有较多杂质,这些杂质的存在对其应用性能造成了有害影响。磷石膏中磷分为可溶性磷和非可溶性磷;对石膏制品造成影响的主要是可溶性磷和共晶体磷。氟以可溶氟(NaF)与CaF2、Na2SIF6等难溶氟形态存在;对石膏制品造成影响的主要是可溶氟。磷石膏中钾、钠主要以碳酸盐、硫酸盐、磷酸盐、氟化物等可溶盐形式存在;磷石膏制品受潮时,钾、钠离子沿硬化体孔隙迁移至表面,水分蒸发后在表面析晶,使制品表面产生起霜和粉化现象。磷、氟影响石膏制品的凝结时间和强度,钾、钠过高会出现纸面石膏板生产中不粘纸现象。本试验采取水洗处理方法,去除磷石膏中杂质,从而使磷石膏能广泛用于纸面石膏板、石膏砌块等建材产品的生产。  相似文献   

8.
磷石膏中有害杂质是影响利用率的主要原因,共晶磷是是磷石膏中仅次于可溶磷的有害杂质,大大影响了磷石膏的应用性能,本文围绕磷石膏中共晶磷对水泥性能影响开展试验,研究共晶磷对水泥性能影响情况,以期对磷石膏中共晶磷的影响有更全面和准确的认识。  相似文献   

9.
磷石膏预处理及利用   总被引:5,自引:1,他引:5  
磷石膏是磷工业的副产物,其中含有磷、氟和有机物等杂质,杂质影响磷石膏的综合利用,需对磷石膏进行预处理。综述了磷石膏用于建筑材料、制硫酸联产水泥等一些常用的资源化方式及磷石膏制取的方法。  相似文献   

10.
杨敏 《云南化工》2010,37(4):37-39
磷石膏作为一种化学石膏,应用方面存在障碍的主要原因在于其含有的杂质,如磷、氟及其他杂质等对其应用性能具有不同的影响。现有的研究认为磷石膏必须经过除杂才能应用忽略了杂质在某些应用领域的可利用性。在介绍磷石膏各成分对其应用性能的影响作用基础上,探讨了杂质的可能利用方面,为实际应用磷石膏时如何选用杂质处理方式提供一定参考理论。  相似文献   

11.
磷石膏和脱硫石膏是堆存量最大的工业固废石膏,将其转化为半水石膏作为建筑胶凝材料是最主要的资源化利用途径。采用蒸压法制备α-半水石膏,以磷石膏和脱硫石膏为原料,天然石膏作为对照组,探究了十二烷基苯磺酸钠(SDBS)、硫酸铝[Al2(SO4)3]、复合转晶剂CM(硫酸铝、柠檬酸钠)对α-半水石膏晶体形貌的调控作用及其强度的影响。结果表明,于135℃下蒸压5 h,3种石膏均能稳定制备α-半水石膏,3种转晶剂对于半水石膏物相组成无影响,同时0.4%(质量分数)CM能够有效降低晶体的长径比;通过t检验法检测,转晶剂对脱硫石膏、天然石膏制备的α-半水石膏的抗压强度有显著性增强作用,α-半水石膏的抗压强度增加2倍以上,分别为13.59 MPa和17.45 MPa。而转晶剂对以磷石膏为原料制备的α-半水石膏的强度没有明显作用。脱硫石膏和天然石膏在0.4%CM的调控下晶体长径比降低,抗压、抗折强度显著提升,而磷石膏由于其杂质影响,转晶剂的作用效果不明显,研究结果可为工业石膏的工业化生产提供一定的理论指导。  相似文献   

12.
磷石膏是磷化工企业湿法生产磷酸时排出的工业废渣,因含有大量磷、氟及碱金属盐等杂质,简单堆放填埋处理会带来占用耕地及污染环境等问题。目前最有前景和效益的处理方式是将磷石膏转为α半水石膏(α-HH),但磷石膏的可溶磷、共晶磷及可溶氟等有害杂质是影响磷石膏制备α-HH的主要障碍。因此磷石膏中有害杂质的预处理及α-HH晶体微观形貌调控措施是以磷石膏为原料制备α-HH的研究重点。本文全面综述了磷石膏的理化特性、有害杂质对石膏性能的影响及预处理措施、α-HH制备方法及晶体微观形貌调控等方面的研究现状,探讨了不同预处理措施及α-HH制备方法的优缺点,并对转晶剂调控α-HH晶体微观形貌的机理进行了总结,最后提出了下一步有待解决的问题。  相似文献   

13.
通过对磷石膏放射性、杂质等的分析,研究磷石膏对石膏板性能的影响,探讨磷石膏在纸面石膏板生产和应用中的特点。结果表明:大部分磷石膏的放射性低于国标GB 6566—2010的限量,但相较于脱硫石膏,其放射性内、外照射指数较高;磷石膏的pH大部分在3~5;磷石膏中酸不溶物和铁铝含量较高;磷石膏样品的w(可溶性F)大多小于0.02%;水洗处理可有效降低磷石膏的杂质含量;乳化石蜡可作为磷石膏基耐水石膏板的防水剂;相较于脱硫石膏,以磷石膏为原料制备的纸面石膏板耐火性能较高。  相似文献   

14.
磷石膏的改性及其在新型建材中的应用   总被引:2,自引:0,他引:2  
以天然磷矿石为原料湿法生产磷酸产生工业副产物磷石膏。每生产1t磷酸产生近5t磷石膏,我国磷石膏总的排放量近3亿t,这些副产物几乎没有经过任何处理被大量堆积在磷酸厂附近,既占据大量的土地,又引起严重的环境问题。磷石膏的主要成分是石膏,还有磷酸盐、氟化物和有机物等杂质,这些杂质对环境产生负面的影响也制约着磷石膏的应用。文章介绍了磷石膏对环境的影响,详细的论述了磷石膏的理化性质,评析了磷石膏的改性技术及在新型建材中的应用,最后对其存在的问题和发展方向提出观点。  相似文献   

15.
将粉煤灰及其激发剂石灰加入到磷石膏制备的高强石膏中制备出水硬性的磷石膏粉煤灰石灰(PGFL)复合胶凝材料。通过对比试验研究了石灰、粉煤灰、磷高强石膏(PGHH)掺量对产品软化系数、抗压强度性能的影响,结果表明:加入适量的粉煤灰、石灰可以显著提高PGFL的后期绝干抗压强度和软化系数,提高材料的耐水性,掺量过多则会带来不利影响。  相似文献   

16.
去除可溶磷杂质和脱水是利用磷石膏制备胶凝材料必需的处理过程。通过改变快烧温度和时间对磷石膏进行处理,分别测定快烧磷石膏可溶磷含量、脱水相组成和胶凝性能,并对几种典型快烧条件下的磷石膏矿物组成和形貌进行分析,同时与经水洗后150℃煅烧4 h制备的磷石膏胶凝材料进行对比。结果表明:快烧后磷石膏为Ca SO4·2H2O、Ca SO4·1/2H2O和Ⅲ、Ⅱ型Ca SO4组成的复相石膏体系,可溶磷杂质含量随快烧温度提高和时间延长明显降低;800℃快烧30 s得到的磷石膏胶凝材料强度最高,2 h抗压强度达到3.79 MPa;经快烧处理磷石膏的颗粒尺寸明显减小。800℃快烧30 s能有效降低磷石膏中可溶磷杂质含量,并获得较高强度的磷石膏胶凝材料;虽然相比水洗后煅烧工艺,快烧制备的磷石膏胶凝材料强度和可溶磷杂质去除率稍低,但快烧是一种具有竞争力的处理工艺。  相似文献   

17.
硫酸酸浸法除磷石膏中杂质氟的研究   总被引:1,自引:0,他引:1  
以H2SO4为浸取剂对磷石膏进行热浸取,考察磷石膏中杂质氟的去除情况,为磷石膏综合利用提供基础数据。研究在均匀设计实验的基础上,进一步考察了温度、时间、硫酸质量分数、含固量(质量浓度)、粒度5个因素对杂质氟去除率的影响规律。结果表明:温度、时间、硫酸是影响氟去除率的主要因素,而含固量、粒度对结果影响较小。较理想的除氟条件为浸取温度88℃,浸取时间45 min,H2SO4质量分数30%,含固量0.43 g/mL,在优化实验条件下杂质氟的去除率可以达到84.50%,处理后的磷石膏含氟仅为0.036%。采用硫酸酸浸处理磷石膏,杂质氟去除效果好,且提高了净化磷石膏的白度。  相似文献   

18.
研究了4种减水剂(葡聚糖凝胶、聚羧酸、FDN、木质素)对建筑石膏性能的影响,采用XRD和扫描电镜对建筑石膏粉和石膏产品进行分析和表征.结果表明:当掺量为0.3%时,HC(聚羧酸)对磷建筑石膏的减水率、绝干抗压强度分别为13%、11.3 MPa,相对空白组强度提高了2.7%;MZS(木质素)对磷建筑石膏的减水率、绝干抗压强度分别为15%、12.1 MPa,相对空白组强度提高了10%;FDN对磷建筑石膏的减水率、抗压强度分别为13.1%、13.1MPa,相对空白组强度提高了19%;G-50(葡聚糖凝胶)对磷建筑石膏的减水率、绝干抗压强度分别为25%、15 MPa,相对空白组强度提高了36%.由SEM分析表明:在掺量为0.3%时,G-50减水剂明显减少了磷建筑石膏水化硬化的实际需水量,从而促进了石膏水化后晶体呈针状生长.晶体与晶体之间紧密衔接,晶粒细化程度高,从而改善了磷建筑石膏砌块内部的晶体结构.故G-50对建筑石膏具有优异的减水作用以及增强效应.  相似文献   

19.
以磷肥工业废弃物磷石膏为主要原料制备磷石膏基胶凝材料(PGF),研究镁盐晶须掺量对磷石膏基胶凝材料抗压强度、抗折强度、抗冲击功强度的影响,结合X射线衍射(XRD)和扫描电镜(SEM)等测试方法,对磷石膏基胶凝材料的微观性能进行分析。结果表明,当MSW掺量为3%,其3 d、7 d和28 d抗压强度分别为15 MPa、18 MPa和21.9 MPa,较未掺晶须试样分别提高了64.8%、26.8%、25.9%。3 d、7 d抗折强度提高33.1%、32.4%。镁盐晶须作为无机盐增强材料,分散在磷石膏基胶凝材料中不参与水化反应,主要通过桥联、拔出和剥离等物理作用增强增韧磷石膏基胶凝材料。  相似文献   

20.
磷石膏用作水泥缓凝剂时,其中含有的杂质对水泥的性能产生不利影响,因此使其应用受到限制。目前研究显示磷石膏经预处理后,凝结时间和强度能满足使用要求,但并不能说明磷石膏作为缓凝组分就能与水泥熟料很好适应。通过分析磷石膏中杂质、预处理磷石膏的晶体结构等因素对水泥性能的可能影响,认为磷石膏作水泥缓凝剂之前应进行充分的试验。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号