首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 833 毫秒
1.
采用传统的氧化物湿法工艺,使用基本配方为Fe2O3:Mn O:Zn O:Ni O=53.5:33:12:1.5(mol%),制备了一种可用于低频无极灯的Mn Zn功率铁氧体材料,分析了材料的起始磁导率、功耗和直流叠加特性。结果表明,得益于组合掺杂,材料具备宽温、低功耗、高直流叠加性能等优良电磁性能。分析了掺杂对改善材料性能的作用机理,为开发此类宽温、低功耗、高直流叠加软磁铁氧体材料提供有益的参考。  相似文献   

2.
采用传统的氧化物湿法工艺制备CuO掺杂的高磁导率MnZn软磁铁氧体。研究了CuO掺杂对材料烧结特性、微观结构及电磁性能的影响。结果表明,适量的CuO掺杂在确保材料起始磁导率的条件下,有效降低烧结温度,改善温升曲线,提高截止频率,提高阻抗特性。1325℃烧结、掺杂0.1wt%CuO的Mn0.48Zn0.47Fe2.05O4材料具有较好的综合性能:μi=10860,TC=125℃,fr=250kHz,样环T25×15×10磁芯线圈的阻抗Z=1420?。  相似文献   

3.
采用氧化物陶瓷工艺制备Mn Zn铁氧体,研究了Ba O掺杂量对高频Mn Zn功率铁氧体微观结构和磁性能的影响。结果表明,少量的Ba O掺杂可以使铁氧体烧结样品的晶粒尺寸增大,密度和饱和磁感应强度提高,功耗降低,而过量加入后会出现过烧现象,功耗增加,饱和磁通密度和密度有所下降。烧结样品的起始磁导率随Ba O掺杂量的增加单调下降。在1260℃烧结温度下,当Ba O掺杂量为0.025wt%时,样品具有最低功耗值,且其他磁性能也较好。另外,与不掺杂Ba O的最佳烧结条件下铁氧体样品相比,1260℃烧结掺杂量为0.025wt%的材料起始磁导率降低,但功耗的温度特性更优。  相似文献   

4.
P2O5掺杂对高磁导率MnZn铁氧体性能的影响   总被引:6,自引:0,他引:6  
为获得高磁导率MnZn铁氧体材料,研究了P2O5掺杂对MnZn铁氧体微观结构及电磁性能的影响.少量掺杂可使铁氧体晶粒尺寸增大,均匀性改善,起始磁导率提高.但若掺杂过量,晶粒中气孔率增加,起始磁导率下降,损耗也大为增加.在配方为(Zn0.454Mn0.493Fe2 0.053 )Fe23 O4的材料中,当P2O5掺杂量为0.10wt%时,起始磁导率可达10345.  相似文献   

5.
自蔓延高温合成技术制备MnZn功率铁氧体   总被引:2,自引:0,他引:2  
在介绍了铁氧体材料的主要种类及制备工艺之后,着重介绍了自蔓延高温合成(SHS)技术的特点和工艺流程.结合传统的MnZn铁氧体制备工艺,论述了初步用SHS技术制备Zn0.16Mn0.78Fe2.06O4功率铁氧体的工艺过程和分析测试结果.从初步的实验结果来看,SHS技术在铁氧体制备中是一种有前途的工艺技术.  相似文献   

6.
采用氧化物陶瓷工艺制备2~4MHz高频开关电源用Mn Zn功率铁氧体,通过对铁氧体断面显微结构、密度和磁性能的测试,研究了TiO_2掺杂量对材料微观结构、磁导率和功率损耗的影响。结果表明,随着TiO_2掺杂量的增加,样品平均晶粒尺寸先减小后增大,磁导率单调减小,不同温度(25℃、100℃)下的磁心总功率损耗(激励条件3MHz,10m T、25m T)先减小后增大。说明TiO_2的适量掺杂可以改善高频Mn Zn功率铁氧体的微观结构,降低其功耗。  相似文献   

7.
CaCO3-SiO2添加对MnZn铁氧体物相及性能的影响   总被引:1,自引:0,他引:1  
采用氧化物陶瓷工艺制备了Mn0.7Zn0.24Fe2.06O4铁氧体.用X射线衍射仪、扫描电镜、B-H分析仪分别表征了CaCO3-SiO2添加对MnZn铁氧体物相、微结构和磁性能的影响.结果表明,添加于MnZn铁氧体的CaCO3-SiO2主要富集于晶界,且生成另相Ca2ZnSi2O7.随着CaCO3-SiO2含量的增加...  相似文献   

8.
采用溶胶-凝胶(Sol-gel)法制备Ni0.2Cu0.2Zn0.6Fe2O4铁氧体材料。基于低温共烧铁氧体(LTCF)技术的要求,研究了掺杂Bi2O3对NiCuZn铁氧体材料的微结构和电磁性能的影响。结果表明,采用溶胶-凝胶法制备的NiCuZn材料,通过掺杂Bi2O3助烧剂,880℃低温烧结4h,已经生成所要的尖晶石相铁氧体;SEM显示随着Bi2O3的加入,NiCuZn铁氧体晶粒逐渐变大,生长均匀。在磁性能方面,添加3wt%Bi2O3时饱和磁化强度达到了77.03 A·m2/kg。Bi2O3在促进NiCuZn铁氧体烧结的同时,增大了材料的磁导率。  相似文献   

9.
Co离子添加对NiZn铁氧体电磁性能的影响   总被引:3,自引:0,他引:3  
用传统的陶瓷工艺制备了Co掺杂Ni0.24Zn0.6Fe1.98O4铁氧体材料,研究了Co掺杂量对NiZn铁氧体磁性能的影响.实验发现,在掺杂少量Co的情况下,随着掺杂量的增加,NiZn铁氧体的晶粒均匀生长,截止频率增高,损耗减小,介电常数在较宽频率范围稳定.因而,添加适量的Co离子,能有效改善NiZn铁氧体的性能.  相似文献   

10.
采用传统陶瓷工艺制备MgZn软磁铁氧体材料,分析了Cu、Mn替代以及微量掺杂对材料性能的影响。实验结果表明适量Cu、Mn取代Mg可提高材料的分子磁矩,从而提高饱和磁化强度,同时增强超交换作用,通过微量Bi2O3、V2O5掺杂可改善材料显微结构,减少材料气孔,提高致密性,使材料具有高饱和磁通密度Bs、高磁导率μi、高居里温度TC、高绝缘电阻ρ等优良性能,并使材料具有良好的直流叠加特性,从而满足大功率电感元件的性能要求。实验表明Mg0.21Mn0.12Cu0.15Zn0.52Fe2O4为主配方添加0.2%Bi2O3、0.1%V2O5材料性能最好。  相似文献   

11.
采用氧化物陶瓷工艺制备MnZn铁氧体材料,研究了配方中Ni(以NiO的形式)取代Mn对MnZn铁氧体微结构及磁性能的影响。结果表明,配方中Ni取代会造成磁导率下降、损耗增大,但适宜的取代量可以提高MnZn铁氧体材料的高温饱和磁感应强度,当取代量为3.5mol%时,MnZn铁氧体100℃下的饱和磁感应强度可以高达492mT。  相似文献   

12.
采用陶瓷工艺制备低温烧结Ni Zn软磁铁氧体材料,研究了掺杂Co_2O_3、Cu O、Bi_2O_3、V_2O_5、Si O_2等对材料烧结温度及主要磁性能如磁导率、功耗等的影响。结果表明,Bi2O3对降低材料烧结温度有益但对功耗改善无益,Si O2对功耗改善有益但效果不明显,而组合添加0.15mol%Co2O3、9.0mol%Cu O、0.40~0.50wt%V2O5不仅可达到大幅度降低材料功率损耗,改善功耗特性,而且可保证材料低温烧结和其它优良磁性能,并获得具有低温烧结(烧结温度900℃左右)、低功耗(功率损耗Pcv≤300k W/m3(20℃,1MHz,30m T))、适于LTCF工艺和片式功率器件应用的Ni Zn功率铁氧体材料。  相似文献   

13.
以Fe_2O_3、MnO、ZnO粉体为原料,采用固相烧结法,通过一次球磨,850℃预烧并掺杂,二次球磨,1200℃烧结最后压制成型制得不同MoO_3掺杂量的锰锌铁氧体,运用SEM、XRD、VSM等手段研究该材料的组织与性能。结果表明,无论是否掺杂MoO_3,均生成了典型的尖晶石铁氧体相和Fe_2O_3相。材料的饱和磁化强度和磁导率随掺杂量增加先增大后减小,矫顽力和剩余磁化强度先减小后增大。表现为掺杂0.06wt% MoO_3的锰锌铁氧块体组织最为致密,磁性能达到最优,矫顽力及剩余磁化强度最小,磁导率和饱和磁化强度最大。  相似文献   

14.
采用正交实验研究了不同降温段的降温速率对MnZn铁氧体磁导率温度稳定性的影响,并在此基础上优化了降温曲线。结果表明,通过正交实验法优化降温曲线,可以制备更加均匀显微结构和较大晶粒尺寸的样品,从而成功地制备得到了高磁导率(μi)高饱和磁通密度(Bs)锰锌铁氧体材料。当降温段1350~1150℃、1150~1000℃和1000~700℃的降温速率分别为0.83℃/min、5.0℃/min和5.0℃/min时,烧结的MnZn铁氧体具有均匀的微观结构和优良的磁性能。此时,烧结体在0~190℃温度区间和应用频率f≤530k Hz时保持高磁导率(μi5000),同时在常温下具有高的饱和磁通密度Bs=530 m T。  相似文献   

15.
分别采用过铁、正铁和缺铁配方通过固相反应法制备MgCuZn铁氧体,分析了Fe3+对铁氧体的磁性能和烧结特性的影响。微量缺铁有助于促进烧结并改善磁性能,过铁情况下,饱和磁化强度随x值增大迅速下降,在x=0.06处下降至38.84 A·m2/kg,相应的磁导率下降,截止频率向高频移动。并研究了微量V2O5掺杂对改善磁性能的作用,在掺杂量为0.4wt%处获得虚部损耗的有效提升(截止频率处提升近30%)。在此基础上探讨了MgCuZn铁氧体用作抗EMI磁珠的可行性,其低廉的价格相较于传统的Ni Zn/Ni Cu Zn铁氧体具有明显的优势。  相似文献   

16.
用普通陶瓷工艺制备了分子式为Sr_(0.62-x)La_(0.38)Ca_xCo_(0.24)Fe_(0.14)~(2+)Fe_(11.62-σ)~(3+)O_(19)(x=0,0.2,0.4,0.6,缺铁量d=1.36)的SrCaLaCo铁氧体,研究了Ca~(2+)取代对材料微结构和磁特性的影响。实验表明,Ca~(2+)不仅进入晶格参与形成M型的六角铁氧体,而且还存在于晶界中影响晶粒的生长。当x=0.4时,预烧样品在1240℃时可形成单一的M相,比饱和磁化强度(σ_s)和矫顽力(H_(cj))达到最大,分别为69.3A×m~2/kg和334k A/m(4329Oe)。当烧结温度为1170℃×1h时,烧结样品获得最佳性能:剩余磁化强度B_r=445m T,矫顽力H_(cj)=420k A/m。  相似文献   

17.
用传统陶瓷工艺制备了M型Sr Fe12-xCrxO19(x=0~0.6)铁氧体,利用X射线衍射、扫描电子显微镜和B-H分析仪对样品的结构与磁性能进行了表征。研究了铬含量、烧结温度和复合添加剂对磁体性能的影响。结果表明,适量的铬取代和复合添加可以提高锶铁氧体的综合磁性能;当x=0.2时,在相对低的温度(1135~1165℃)烧结,其磁性能达到TDK的FB6H性能水平。其中,最佳磁性能可达到Br=401.7m T、Hcb=300.5k A/m、Hcj=353.1k A/m和(BH)max=31.4k J/m3。  相似文献   

18.
采用不同厂家的NiO原料制备的NiZn铁氧体性能对比   总被引:1,自引:0,他引:1  
采用传统氧化物法制备NiZn铁氧体材料,考查不同厂家的NiO原料对于高性能NiZn铁氧体材料电磁性能的影响.实验表明,NiO原料的纯度、颗粒尺寸、颗粒形貌严重影响材料的烧结活性和电磁性能.高纯度、颗粒尺寸较均匀、形状为松果状的NiO原料是制备高性能NiZn铁氧体材料的最佳选择.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号