首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 578 毫秒
1.
自交联型丙烯酸阴极电泳涂料树脂的合成   总被引:1,自引:0,他引:1  
采用甲基丙烯酸二甲胺基乙酯(DMAEMA)、甲基丙烯酸β羟乙酯(HEMA)、N-羟甲基丙烯酰胺(NHMA)、甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)等单体合成了自交联型丙烯酸阴极电泳涂料,研究了影响树脂水溶性和漆膜性能的因素。实验结果表明,DMAEMA、HEMA、NHMA用量分别为单体用量的16%、15%、6%,引发剂偶氮二异丁腈(AIBN)的用量为单体用量的2%,合成反应2 h,电泳电压125 V时,可得到综合性能良好的高装饰性自交联型丙烯酸阴极电泳涂膜。电泳漆膜外观平整光亮,性能优良,膜厚可达22μm,光泽度(20°)可达123.9,适用于要求高装饰性表面的涂装。  相似文献   

2.
采用自由基溶液聚合法,以甲基丙烯酸四氢糠基酯(THFMA)、甲基丙烯酸羟乙酯(HEMA)、甲基丙烯酸二甲胺基乙酯(DMAEMA)、甲基丙烯酸异冰片酯(IBOMA)、N-羟甲基丙烯酰胺(NMA)等单体合成了高附着力丙烯酸阴极电泳涂料用树脂.研究树脂漆膜外观及性能的几种影响因素.实验结果表明:THFMA用量为15%,以偶氮二异丁腈为引发剂,槽液pH控制在5.8左右,可得到平整丰满漆膜,其附着力为0级,光泽可达130.4,膜厚为21.4μm.可广泛应用与五金、汽车等行业.  相似文献   

3.
《中国涂料》2016,(8):30-33
选择了一种结构新颖、成本较低的脂环族丙烯酸酯单体(NCMA)应用于高固体分丙烯酸树脂中,并且将NCMA与甲基丙烯酸环己酯(CHMA)和甲基丙烯酸异冰片酯(IBOMA)两种脂环族单体作了详细的对比分析。研究发现,NCMA单体降低树脂黏度的效果显著优于CHMA及IBOMA两种单体,而且得益于NCMA单体的价格优势,制得的树脂成本低、VOC排放低、更具环保性。因此,NCMA作为一种新型的功能性单体替代CHMA或者IBOMA将具有非常大的市场前景。  相似文献   

4.
采用自制交联单体1008和丙烯酸羟乙酯(HEA)替代N-羟甲基丙烯酰胺,以丙烯酸丁酯(BA)、苯乙烯(St)为基本原料,通过预乳化半连续种子乳液聚合法制备环保型自交联聚丙烯酸酯印花胶粘剂。考察了阴非离子复合乳化剂、引发剂、丙烯酸、丙烯酸羟乙酯和自制交联单体对乳液色牢度、吸水率、黏度的影响,并对环保型自交联乳液与羟甲基丙烯酰胺类乳液进行了性能对比。研究结果表明:w(复合乳化剂)=1.82%(占单体总质量,下同)、w(APS)=0.41%、w(AA)=3.43%、w(HEA)=3.32%、w(1008)=0.68%时,所制备的印花胶粘剂具有优良的性能,且其游离甲醛释放量合格,满足印花织物应用性能要求。  相似文献   

5.
陈亮  陈炳耀  凌辉  刘根伸  梁光容 《粘接》2014,(10):60-63,47
以甲基丙烯酸异冰片酯(IBOMA)、甲基丙烯酸羟乙酯(HEMA)为单体,通过添加甲基丙烯酸(MAA)、硅烷偶联剂改性纳米二氧化硅(nano-SiO 2)、甲基丙烯酸甲酯-丁二烯-苯乙烯三元共聚物(MBS)等制备低气味双组分丙烯酸酯胶粘剂(SGA),并通过单因素法研究了各因素对胶粘剂性能的影响。结果表明,当m(IBOMA)/m(HEMA)=5/1、w(MAA)=7%、w(改性nano-SiO 2)=3%、w(M BS)=6%时,低气味SGA表现的综合性能较好。  相似文献   

6.
以St(苯乙烯)为硬单体、BMA(甲基丙烯酸丁酯)为软单体、HEMA(甲基丙烯酸羟乙酯)为功能单体、自制A-35(水溶性丙烯酸酯树脂)为乳化剂、DAAM(双丙酮丙烯酰胺)和ADH(己二酸二酰肼)为交联单体,采用种子乳液聚合法制备了一种新型水性上光涂料用聚丙烯酸酯乳液。研究结果表明:当m(St)∶m(BMA)=50∶42~45∶52、w(A-35)=20%~30%(相对于乳液总固含量而言)、w(HEMA)=2%和w(DAAM)=2.5%(均相对于单体总质量而言)时,该乳液的硬度、附着力和储存稳定性相对最佳,并且涂膜可室温固化,而且其光泽度、耐水性、耐溶剂性及耐磨性均满足水性上光涂料的使用要求。  相似文献   

7.
通过不饱和脂肪酸和N-(甲氧基甲基)丙烯酰胺(NMMA)与环氧树脂(EP-20)反应得到环氧酯,再将环氧酯与乙烯基类单体采用溶液聚合的方式共聚,制备出多重自交联水性丙烯酸树脂分散体。系统研究了环氧酯和甲基丙烯酸的含量,交联单体NMMA、乙酰乙酸基甲基丙烯酸乙酯(AAEM)、β-明胶蛋白质、不饱和脂肪酸及制备工艺对树脂涂膜综合性能的影响。结果表明:多重自交联水性丙烯酸涂料具备优异的综合性能,表干时间为28 min,耐水性达14 d,硬度和附着力分别为3H和0级,还表现出良好的耐溶剂性。  相似文献   

8.
《中国涂料》2015,(12):39-45
以丙烯酸单体接枝的聚酯多元醇(PACL)、叔碳酸缩水甘油酯(Cardura E10P)作为功能单体与甲基丙烯酸甲酯(MMA)、苯乙烯(St)、甲基丙烯酸羟乙酯(HEMA)、丙烯酸(AA)、甲基丙烯酸异冰片酯(IBOMA)等丙烯酸酯类单体共聚,采用半连续聚合工艺,制备得到了高羟值、低黏度、低VOC含量的羟基丙烯酸树脂水分散体(简称羟丙分散体)。研究讨论了PACL用量、E10P用量、IBOMA用量、中和剂的种类及用量等因素对分散体黏度的影响。结果表明:当中和剂选择N,N-二甲基乙醇胺(DMEA)、中和度为90%、PACL用量为8.2%、E10P用量为12.5%、IBOMA用量为7.5%时,制备得到了固体分为48%,固体树脂羟值含量为4.8%,黏度为700~750 m Pa·s,VOC含量为2.53m L/100 g的丙烯酸树脂水分散体。由该羟丙分散体与多异氰酸酯固化剂配合使用,制得了综合性能优良的双组分聚氨酯涂料,可作为金属、塑胶等基材表面的防腐涂料使用。  相似文献   

9.
以醇酸树脂(BTS-SZ)为原料,甲基丙烯酸二甲胺基乙酯(DM)、甲基丙烯酸甲酯(MMA)、丙烯酸正丁酯(BA)、γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH-570)为单体,偶氮二异丁腈(AIBN)为引发剂,采用溶液转相乳液聚合法,制备了丙烯酸酯聚合物/醇酸树脂乳液(WPAARSi)。探讨了单体滴加时间、聚合温度、单体配比、BTS-SZ用量对WPAARSi涂膜光泽度及耐水性的影响。采用FTIR、TEM、GPC、TGA及镜向光泽度计等对聚合物进行了结构表征与性能测试。结果表明:当单体滴加时间为2 h、聚合温度为85℃、w(DM)=6%、m(MMA)∶m(BA)=18∶2、w(BTS-SZ)=55%、w(KH570)=0.62%、w(AIBN)=1.62%时,涂膜的光泽度为116%,吸水率为2.8%。GPC测试表明,改性后醇酸树脂的数均分子质量由1413提高到了2945,分布指数(PDI)由3.646提高至6.741;TGA测试表明,改性后醇酸树脂的热稳定性提高;流变行为分析表明,乳液具有良好的触变性。  相似文献   

10.
透明亲水丙烯酸树脂防雾材料的制备及研究   总被引:2,自引:0,他引:2  
胡静  楼白杨 《塑料工业》2007,35(12):55-58
通过溶液聚合方法制备了防雾材料亲水丙烯酸树脂。通过实验比较,得到了最佳工艺条件,软单体为丙烯酸乙酯,硬单体为甲基丙烯酸甲酯,官能单体则以丙烯酸、甲基丙烯酸为最佳,辅助官能单体为甲基丙烯酸β-羟乙酯。交联体系采用自交联体系,交联剂采用含有亲水氨基的N-羟甲基丙烯酰胺,交联剂与羧酸质量比为4:1;交联固化温度100℃,固化时间40min。由此制备的防雾树脂具有优良的水溶性和防雾性。  相似文献   

11.
以甲基丙烯酸甲酯(MMA)、苯乙烯(St)和丙烯酸丁酯(BA)等为主要单体,引入丙烯酸(AA)、丙烯酸羟基乙酯(HEA)与甲基丙烯酸异冰片酯(IBOMA)等作为功能单体,通过半连续溶液聚合工艺,最后加水分散制得水性羟基丙烯酸树脂。利用FT-IR、透光度、粘度分析研究了单体配比、引发剂(BPO)用量、温度、链转移剂(DDM)用量、功能单体用量等因素对树脂性能的影响。结果表明,当AA、HEA、IBOMA、BPO和DDM的质量分数分别为3%、12%、10%、3%和2%,聚合反应温度100℃时可获得粘度为5 Pa.s,固含量约45%的水性羟基丙烯酸树脂。  相似文献   

12.
tert‐Butyl methacrylate (TBMA) was copolymerized with various comonomers that were selected from methyl methacrylate (MMA), n‐butyl acrylate (NBA), acrylic acid (AA), and 2‐hydroxyethyl methacrylate (HEMA). From film physical properties, poly(TBMA‐co‐HEMA) and poly(TBMA‐co‐AA‐co‐NBA), were selected as resin binders. To introduce unsaturated double bonds onto the side chain of copolymers, they were further functionalized with acryloyl chloride and glycidyl methacrylate. Copolymers synthesized in this investigation were all identified by using FTIR and NMR. The thermal decomposition temperature of functionalized poly(TBMA‐co‐HEMA) showed obvious difference before and after crosslinking. Adding a small amount of EGDMA as the crosslinking agent could increase the degree of crosslinking and obviously improve the physical properties. Functionalized poly(TBMA‐co‐HEMA) was used as a binder resin and composed with a photoacid generator for positive photoresists. From exposure characteristics, the optimal lithographic condition was achieved when exposed for 90 s, PEB at 100°C for 2.5 min, and developed in 10 wt % Na2CO3 developer for 30 s. After completing the lithography process, the residual pattern of positive photoresist was further treated at 140°C for 30 min to cure the pendant unsaturated groups. The resolution of the positive photoresist was analyzed by an optical microscope and SEM technique. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 328–333, 2001  相似文献   

13.
含羟基丙烯酸树脂的水溶性研究   总被引:4,自引:0,他引:4  
用溶液聚合法制备了丙烯酸丁酯/甲基丙烯酸甲酯/甲基丙烯酸-2-羟乙酯(HEMA)/丙烯酸(AA)四元共聚丙烯酸树脂,将其中和后溶解在水中,选择了合理的溶解工艺,研究了该丙烯酸树脂水溶解行为,探讨了AA用量、HEMA用量、中和度等对其水溶性的影响,并用红外光谱表征了中和前后吸收峰变化。结果表明:该类树脂具有与不含羟基的丙烯酸树脂不同的水溶解行为,不存在初始的黏度下降过程;当w(AA)从5.2%增加到9.0%,在相同黏度时,树脂分散体的透明度增加,w(固体份)从18.46%增加到28.50%,即水溶性变好,w(AA)最低用量为6.5%;当w(HEMA)从13.9%增加到32.5%,在相同黏度时,树脂分散体的透明度增加,w(固体份)从23.76%增加到27.58%;当树脂的中和度从60%增加到100%,树脂分散体黏度增加,透明度增加。  相似文献   

14.
Co- and terpolymers containing dimethylaminoethyl methacrylate (DMAEMA), methyl methacrylate (MMA), and 2-hydroxyethyl methacrylate (HEMA) were prepared by solution polymerization, and characterized by dilute solution viscometry and proton and carbon-13 nuclear magnetic resonance spectroscopy. Polymers were prepared containing 75, 60, 40, 25, and 10 mol % DMAEMA but with differing levels of MMA and HEMA. Polymer solutions were titrated under nitrogen to obtain variations of pKb with alpha (the extent of protonation of the DMAEMA residue). From these experiments, we were able to show that, as expected, the cooperative nature of the ionization process decreased as the level of DMAEMA in the polymer was reduced from 75 mol % to 10 mol %. By comparing polymers containing similar amounts of DMAEMA monomer, we were also able to show that base strength increased with the polarity of the uncharged portion of the polymer, in other words, that polymers containing higher levels of HEMA were stronger bases than polymers containing higher levels of MMA. This effect was rationalized by assuming that higher contents of the more polar HEMA monomer facilitated the coil expansion that accompanied the process of ionization, thus increasing charge separations at corresponding values of alpha and increasing base strength.  相似文献   

15.
Hybrid miniemulsion polymerization was performed with a three‐component acrylic system of methyl methacrylate, butyl acrylate, and acrylic acid in the presence of a Bayer® Roskydal TPLS2190 unsaturated polyester resin. Latexes were obtained in which the polyester resin was grafted to the acrylic polymer, forming a water‐based crosslinkable coating. Grafting between the resinous component and the acrylic polymer is a feature different from the work of others who have attempted to combine the properties of both systems in water‐based blends. Both emulsions and latexes were shelf‐stable for over 6 months, shear‐stable, and resistant to at least one freeze/thaw cycle. Resin‐to‐monomer ratios were studied as high as 1 : 1 (wt : wt), and total emulsion solids, as high as 45%. Monomer droplet and latex particle sizes were similar, suggesting evidence of the preponderance of droplet nucleation. A high level of crosslinking (>70%) during polymerization was observed in this particular hybrid system in contrast to those involving alkyd or polyurethane resins (<5%). Films, both homogeneous and hard, were achieved with exceptional adhesion. Electron microscopy showed the hybrid particle morphology to have internal domains of polyester resin in an acrylic matrix. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 916–927, 2000  相似文献   

16.
实验以甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)、苯乙烯(St)、丙烯酸(AA)、丙烯酸羟丙酯(HPA)、过氧化苯甲酰(BPO)、叔丁基过氧化物、链转移剂、二甲基乙醇胺(DMAE)、丙二醇甲醚(PM)、一缩二乙二醇丁醚为主要原料,溶液聚合法合成了含羟基水性聚丙烯酸酯树脂,将合成树脂固含量控制在80%~85%,水分散体固含量为45%,黏度小于1 500 mPa.s。讨论了引发剂、链转移剂、引发温度、玻璃化转变温度等因素对树脂合成及水分散体黏度的影响。研究结果表明:随着引发剂、链转移剂用量的增加,合成树脂及分散体黏度降低;随着引发温度的提高,合成树脂及水分散体黏度下降;玻璃化转变温度越高,合成树脂黏度越低。  相似文献   

17.
A new methacrylate monomer, trimethylolpropane mono allyl ether dimethacrylate (TMPEDMA), was synthesized and evaluated. This branched methacrylate was designed to increase esterase‐resistance when incorporated into conventional HEMA (2‐hydroxyethyl methacrylate)/BisGMA (2,2‐bis[4(2‐hydroxy‐3‐methacryloyloxy‐propyloxy)‐phenyl] propane) dental adhesives. The new adhesives, HEMA/BisGMA/TMPEDMA in a 45/30/25 (w/w) ratio were formulated with H2O at 0 (A0T) and 8 wt % water (A8T) and compared with control adhesives (HEMA/BisGMA, 45/55 (w/w), at 0 (A0) and 8 wt % (A8) water). Camphoroquinone (CQ), 2‐(dimethylamino) ethyl methacrylate and diphenyliodonium hexafluorophosphate were used as photoinitiators. The new adhesives showed a degree of conversion comparablewith the control and improved modulus and glass transition temperature (Tg). Exposure of photopolymerized discs to porcine liver esterase for up to eight days showed that the net cumulative methacrylic acid (MAA) release in adhesives formulated with the new monomer and 8% water (A8T: 182 μg/mL) was dramatically (P < 0.05) decreased in comparison to the control (A8: 361.6 μg/mL). The results demonstrate that adhesives made with the new monomer and cured in water to simulate wet bonding are more resistant to esterase than conventional HEMA/BisGMA adhesive. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
以甲基丙烯酸甲酯(MMA)和丙烯酸丁酯(BA)为主单体,多种交联体系为功能单体,采用水性固体丙烯酸树脂(SR-675、QZ-7001、QZ-7002)和聚合型乳化剂NRS-10搭配作为体系的表面活性剂,通过预乳化半连续乳液聚合工艺合成了木器高光面漆用丙烯酸酯树脂。探究了水性固体丙烯酸树脂酸值、Tg、相对分子质量以及用量;NRS-10用量、引发剂(APS)用量和树脂Tg对树脂及涂膜性能的影响。结果表明:当采用水性固体丙烯酸树脂SR-675且用量占单体总量的20%(下同)、NRS-10占0.5%、APS占0.75%,树脂Tg设计为40 ℃时,合成的丙烯酸酯树脂制备成木器面漆,涂膜光泽高、附着力好、耐水性好,铅笔硬度可达2H。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号