首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
研究了二苯并噻吩(DBT)和4-甲基二苯并噻吩(4-MDBT)在Mo/γ-Al2O3和CoMo/γ-Al2O3上加氢脱硫反应的产物分布及其可能的反应网络,并通过反应压力和温度对产物分布的影响,揭示了加氢脱硫反应的可能机理。DBT在Mo/γ-Al2O3上的加氢脱硫反应主要通过直接氢解路径和加氢路径进行,两种途径的作用相近;在CoMo/γ-Al2O3催化剂上的加氢脱硫主要通过直接氢解路径进行。4-MDBT在Mo/γ-Al2O3和CoMo/γ-Al2O3上的加氢脱硫反应主要通过加氢路径进行。Co的加入有助于提高Mo/γ-Al2O3催化剂的加氢脱硫活性,尤其是直接氢解脱硫活性。4-MDBT加氢脱硫反应中加氢路径的相对作用显著大于DBT加氢脱硫反应的加氢路径,间接证明4-MDBT的加氢脱硫过程存在对“端连吸附”的空间位阻。4-MDBT分子中甲基的供电子作用有利于促进苯环的加氢反应,从而有助于缩小与DBT分子间加氢脱硫活性的差别。在DBT和4-MDBT加氢脱硫反应中,反应压力和温度对加氢路径的影响大于对氢解路径的影响。  相似文献   

2.
介绍了Ni2P催化剂的活性组分结构及其加氢脱硫活性相,综述了Ni2P催化剂催化不同模型含硫化合物加氢脱硫(HDS)机理和HDS反应网络方面的最新研究进展。直接脱硫(DDS)反应路径主要发生在Ni2P催化剂的Ni(1)位,而加氢脱硫(HYD)反应路径主要发生在Ni(2)位。Ni2P表面上的NiPxSy作为活性相在HDS反应中起着重要作用。以Ni2P作为催化剂时,噻吩的HDS过程中有中间体四氢噻吩生成,二苯并噻吩的HDS主要通过DDS反应路径完成,4,6-二甲基二苯并噻吩的HDS主要通过HYD反应路径完成。  相似文献   

3.
研究了4,6-二甲基二苯并噻吩(4,6-DMDBT)在Co-Mo/γ-Al2O3上的加氢脱硫反应产物分布及其可能的反应网络,并通过反应压力和温度对产物分布的影响,揭示了加氢脱硫反应的可能机理.研究发现,4,6-DMDBT在Co-Mo/γ-Al2O3上存在甲基位置转移的异构化反应,而4,6-DMDBT加氢脱硫反应通过直接氢解路径和加氢路径进行,其中加氢路径起主要作用.通过4-甲基二苯并噻吩(4-MDBT),二苯并噻吩(DBT)的对比试验表明,二苯并噻吩类加氢脱硫转化率4,6-DMDBT<4-MDBT<DBT,而反应产物中联苯类与环己基苯类的摩尔分数之比,也存在上述顺序,加之实验发现的4,6-DMDBT部分加氢产物加氢脱硫的高活性,都间接证明二苯并噻吩类硫化物在催化剂表面存在通过硫原子的端连吸附,4,6-DMDBT位于4,6位的两个甲基在加氢脱硫过程存在对"端连吸附"的空间位阻,这是造成4,6-DMDBT转化率低的主要原因.实验研究表明反应压力对4,6-DMDBT加氢脱硫反应中加氢路径的影响很大,而对氢解路径影响不明显;反应温度对4,6-DMDBT加氢脱硫反应中加氢路径和氢解路径都有很大影响,但对氢解路径的影响相对较大.4,6-DMDBT分子中甲基的供电子作用有利于苯环的加氢反应,从而降低了加氢路径反应活化能,却不利于4,6-DMDBT在催化剂表面通过硫原子的端连吸附,因而使氢解路径的反应活化能升高.  相似文献   

4.
考察了焙烧温度对以四硫代钼酸铵为前躯体制备二硫化钼催化剂加氢脱硫活性的影响。采用BET,XRD,SEM,HRTEM,XPS等手段对催化剂进行表征,并以二苯并噻吩为原料,在高压釜反应器中评价催化剂活性。结果表明:随着焙烧温度的升高,MoS2的比表面积、结晶度逐渐升高,惰性气氛中焙烧时,主要通过改变催化剂中S元素的含量和价态来影响催化剂的物化性质;焙烧温度为400℃时,所得催化剂的活性最高。  相似文献   

5.
以四硫代钼酸铵为前躯体制备二硫化钼(MoS2)催化剂,并引入Ni金属作为助剂合成Ni-Mo-S催化剂,以二苯并噻吩质量分数为0.8%的十氢萘溶液为模型化合物,考察了这两种催化剂的加氢脱硫性能,同时考察喹啉的存在对于这两种催化剂加氢脱硫反应性能的影响。结果表明:Ni助剂的引入增强了催化剂的加氢脱硫反应活性;喹啉的存在抑制了加氢脱硫反应活性,在MoS2上,喹啉的存在同时抑制了催化剂的预加氢脱硫和直接脱硫两条路径的活性,而在Ni-Mo-S催化剂上,喹啉只抑制了预加氢脱硫路径的活性,而直接脱硫路径的活性反而得到提高;喹啉的存在对于Ni-Mo-S催化剂活性的抑制作用明显小于MoS2,说明Ni助剂的引入有效地提高了硫化钼催化剂的耐氮性能。  相似文献   

6.
采用溶胶凝胶法制备介孔MoO3-ZrO2复合氧化物,利用XRD、N2吸附-脱附及SEM对其进行表征,考察焙烧温度对其晶相结构、比表面积、孔径以及形貌特征的影响;以FCC汽油为原料,对MoO3-ZrO2经预硫化后制得的催化剂的加氢脱硫活性进行评价。结果表明:在焙烧温度为550 ℃时,ZrO2表面出现蠕虫状结构;焙烧温度为650 ℃时,开始出现Zr(MoO4)2特征峰;焙烧温度为700 ℃时,ZrO2由四方相向单斜相转化;适当提高焙烧温度有助于MoO3-ZrO2复合氧化物平均孔径的增大以及得到较适合的比表面积,但过高的焙烧温度会使复合氧化物烧结断裂;经650 ℃焙烧得到的MoO3-ZrO2复合氧化物催化剂具有较高的脱硫活性,对FCC汽油的脱硫率可达70.3%。  相似文献   

7.
Co-Mo/SBA-15深度加氢脱硫催化剂的研究   总被引:2,自引:2,他引:0  
以介孔分子筛SBA-15为载体,担载Co-Mo双金属活性组分制备了深度加氢脱硫催化剂。通过XRD、BET表征,担载金属后SBA-15分子筛仍然保持二维晶相结构,比表面积略有下降。用0.5% 二苯并噻吩(DBT)的环己烷溶液为模型化合物,在固定床反应器上考察了金属负载量的影响及最佳反应条件,并用高硫催化裂化柴油为原料评价了催化剂的脱硫反应活性。结果表明,当催化剂负载Co-Mo(5,25)时,在反应温度360 oC,压力4 MPa,氢油体积比400,空速4.0 h-1的条件下,催化裂化柴油脱硫率最高可以达到95.59%。  相似文献   

8.
采用免焙烧法制备催化剂前驱体,用H_2等离子体还原制备免焙烧的MoP(NC-MoP)催化剂和Ce改性的MoP(Ce-MoP(n))催化剂。对制备的催化剂进行XRD和N_2物理吸附表征,并用质量分数为0.8%的二苯并噻吩/十氢萘(DBT)溶液来考察催化剂的加氢脱硫(HDS)反应活性。与焙烧的MoP(C-MoP)催化剂相比,NC-MoP具有较小的颗粒尺寸和较大的比表面积,从而具有较高的DBT加氢脱硫反应活性;引入Ce后,催化剂的颗粒尺寸降低,比表面积增加,反应活性提高;Ce含量较低时,助催化效果随着Ce含量的增加而增强,Ce-MoP(0.3)具有最高的反应活性。  相似文献   

9.
采用共沉淀法和水热法制备非负载型Ni-Mo-W加氢脱硫催化剂,利用XRD、BET、HRTEM、GC-PFPD表征手段对催化进行表征。结果表明,共沉淀法制备的氧化态催化剂的活性组分具有良好的分散性;水热法制备氧化态催化剂具有较高比表面积、较大孔容、孔径。不同制备方法对硫化态催化剂的晶型结构、比表面积、孔容和孔径影响不大。硫化态催化剂具体较大的比表面积、孔容和孔径,较高的MoS_2和Ni_3S_2晶相堆叠层数。在连续固定高压微反装置上考察了不同制备方法的硫化态催化剂的加氢脱硫活性。结果表明共沉淀法制备的硫化态催化剂的加氢脱硫率高达98.8%,催化剂具有良好的稳定性和催化活性,可持续反应550h。  相似文献   

10.
采用浸渍法合成了纳米晶TS-1负载磷钨酸的HPW-Nano-TS-1催化剂,31P MAS-NMR,FT-IR,UV-vis表征结果表明,合成的负载型催化剂上磷钨酸保持Keggin骨架结构。以模型有机硫化物的正辛烷溶液为模拟油的吸附脱硫试验结果表明,噻吩、苯并噻吩和二苯并噻吩在纳米晶TS-1及HPW-Nano-TS-1样品上吸附达到平衡的时间逐渐增加,饱和吸附量相应减少。磷钨酸的引入提高了纳米晶TS-1对于大分子有机硫化物二苯并噻吩的氧化脱除活性。在温度60 ℃的反应条件下,噻吩的脱除率高于98.0%,二苯并噻吩的脱除率为58.0%,3种模型有机硫化物氧化脱除由易到难的顺序为:噻吩>二苯并噻吩>苯并噻吩,与常规的TS-1沸石或者多酸催化剂的活性顺序存在明显的差异,这是纳米晶TS-1沸石对于有机硫分子氧化反应的择形作用、扩散效应和磷钨酸在催化氧化脱硫过程中的电子云密度综合作用的结果。  相似文献   

11.
 采用不同顺序将Na2O引入到NiMo/MCM-41催化剂前驱体中,并以质量分数0.8 %的二苯并噻吩(DBT)的十氢萘溶液作模型化合物,考察了催化剂的加氢脱硫(HDS)催化性能。结果表明,引入Na2O促进了NiMo/MCM-41催化剂前驱体中 -NiMoO4 物种的生成,不利于活性组分的分散,同时还抑制了其还原。分步浸渍法引入Na2O影响了催化剂中Mo物种的配位状态。Na2O引入顺序对NiMo/MCM-41催化剂HDS催化活性有较大影响。共浸渍法引入Na2O时,同时抑制了催化剂的加氢反应路径(HYD)和直接脱硫反应路径(DDS)催化活性,因此其HDS催化活性最低。与共浸渍和在活性组分之后引入Na2O相比,在活性组分之前引入Na2O对催化剂的HYD催化活性影响最小,但DDS催化活性显著增加,提高了总的HDS催化活性。通过控制碱金属氧化物的引入顺序,可以调变催化剂活性和选择性,是一种对硫化物催化剂有效的改性方法。  相似文献   

12.
以FCC汽油为原料,在中型试验装置上考察230~400℃范围内硫化温度对MoCo/Al2O3催化剂加氢脱硫率及烯烃加氢饱和率、产品辛烷值损失的影响。结果表明,在反应温度260℃下,随着硫化温度的提高,加氢脱硫率由84.4%逐步提高到91.1%;在反应温度280℃下,加氢脱硫率均可维持在96.0%以上,受硫化温度的影响较小。在上述两种情况下,250℃硫化时催化剂的烯烃加氢饱和率最低,辛烷值损失最小。表明250℃下硫化充分且碳含量较少是其FCC汽油加氢脱硫选择性最好的原因。  相似文献   

13.
采用磷酸氢二铵溶液对工业NiW催化剂进行了磷化处理,采用TG、XRD、BET对合成的磷化工业催化剂进行了表征,考察了还原温度对磷化工业催化剂噻吩HDS(加氢脱硫)反应活性的影响。实验结果表明,随焙烧温度提高,磷化工业催化剂前体的起始磷化还原温度升高而磷化还原过程的失重率减小。还原温度对磷化的工业催化剂的体相结构影响很小;随还原温度的提高,磷化的工业催化剂的比表面积增加。磷化的工业催化剂有利于高温时的的噻吩HDS反应,其噻吩HDS转化率随还原温度的增加而降低,适宜的工业催化剂的磷化还原温度为550℃,此时该催化剂在300℃和360℃的噻吩HDS反应转化分别为61.15%和99.45%。  相似文献   

14.
含钴 WP/MCM-41催化剂二苯并噻吩氢脱硫性能   总被引:1,自引:0,他引:1  
 制备了不同 Co 含量的 WP/MCM-41催化剂,并采用X-射线衍射(XRD)、BET 比表面积以及 X-光电子能谱(XPS)等分析手段对催化剂进行了表征,采用微反装置对该催化剂二苯并噻吩(DBT)加氢脱硫(HDS)性能进行了评价。结果表明,WP 是催化剂的主要活性相,Co 的加入不同程度地促进了 WP 晶相生长,同时在催化剂表面形成了具有一定活性的类似 Co—W—P 结构的双金属磷化物。Co 对 WP/MCM-41催化剂的 DBT HDS 反应有促进作用,催化剂中活性位数量以及主要活性相 WP 在催化剂表面所占比例是决定催化剂活性的主要因素。其中,Co 质量分数为9%的催化剂(Cat-Co-9)具有相对最高 DBT HDS 活性,其 DBT 脱硫率和转化率分别为63.7%和60.4%,比未加 Co 的催化剂分别提高13.2%和13.7%。DBT 在 WP/MCM-41催化剂上以加氢脱硫(HYD)路径为主,Co 的加入对 HYD 路径起到促进作用,但随着 Co 加入量的提高,其 HYD 路径产物选择性逐渐降低,而直接脱硫(DDS)路径产物选择性不断提高。  相似文献   

15.
Mo_2N催化剂加氢脱硫性能的研究   总被引:3,自引:0,他引:3  
在中压反应装置中以环己烷69%(m),环己烯20%(m),苯10%(m),噻吩1%(m)混合液为反应物,考察了不同比表面Mo2N的加氢脱硫(HDS)、环己烯加氢(HYD)和苯加氢(BHD)的活性。表面积大的催化剂,HDS、HYD活性均高,但若用比活性比较,则刚好相反。在一较宽温度范围内测试Mo2N催化性能,HDS和HYD活性随温度升高而增加,但各温区变化幅度差异较大。对Mo2N催化剂采用3种预处理方法:(1)400℃下H2还原;(2)400℃下H2S/H2硫化;(3)不处理。结果表明,HDS和HYD活性顺序为预还原>不处理>预硫化。预还原处理的Mo2N具有接近硫化态商品NiCoMo/Al2O3的催化剂性能,此催化剂具有良好的应用前景  相似文献   

16.
MCM-41担载的Pd催化剂加氢脱硫反应性能   总被引:2,自引:1,他引:1  
 以含0.8%(质量分数)二苯并噻吩(DBT)的十氢萘溶液为模型化合物, 考察了Si-MCM-41、Al-MCM-41和Si-MCM-41与HY机械混合物(MY)担载的Pd催化剂加氢脱硫(HDS)反应性能, 并采用XRD、N2吸附和吡啶吸附红外光谱(Py-IR)方法对载体进行了表征. 结果表明, Al-MCM-41表面酸中心以L酸为主, MY表面主要为B酸; 而Si-MCM-41的酸性较弱. DBT在这些担载型Pd催化剂上主要通过预加氢反应路径脱硫, 催化剂活性顺序为: Pd/Al-MCM-41>Pd/MY>Pd/Si-MCM-41. 提高载体的酸性显著提高了催化剂的加氢脱硫活性, 但对其直接脱硫活性影响不大. 从DBT的HDS产物分布来看, Pd/Al-MCM-41具有较高的脱硫活性和异构化活性以及较低的加氢裂化活性; 而Pd/MY表现出较高的加氢裂化活性, 但脱硫活性相对较低, 并且失活较快. 二者在反应性能上的差异可能与MY孔道结构和表面酸中心分布不同有关. 具有良好介孔孔道结构和较高L酸与B酸比例的Al-MCM-41是一种优良的贵金属HDS催化剂载体.  相似文献   

17.
 分别以硅溶胶、SiO2粉、正硅酸乙酯(TEOS)为硅源与Al2O3粉制备成硅铝载体,然后采用孔饱和法制备负载型NiW催化剂NiW/Al2O3-SiO2。采用TPR、XPS和TEM手段对各硫化态NiW/Al2O3-SiO2催化剂进行了表征。在微反装置中,以4,6-二甲基二苯并噻吩(4,6-DMDBT)为模型硫化合物,评价其加氢脱硫活性,并与NiW/Al2O3比较。结果表明,采用无机硅源制备的NiW/Al2O3-SiO2催化剂的加氢脱硫活性高于NiW/Al2O3;而由正硅酸乙酯制备的NiW/Al2O3-SiO2催化剂仅在SiO2质量分数为5%时,其加氢脱硫活性才高于NiW/Al2O3。同时,不同硅源制备的NiW/Al2O3-SiO2催化剂对其上4,6-DMDBT加氢脱硫反应的直接脱硫和加氢脱硫两条路径的促进作用也不相同,由无机硅源制备的NiW/Al2O3-SiO2催化剂对直接脱硫路径的促进作用强于对加氢路径的促进作用;而由正硅酸乙酯制备的催化剂对直接脱硫路径无促进作用。NiW/Al2O3-SiO2加氢脱硫性能的提高与其容易还原和硫化的性能相关。  相似文献   

18.
MoO_3/TiO_2-SiO_2催化剂的阈值效应   总被引:3,自引:0,他引:3  
采用气相流动吸附法制备TiO2 /SiO2 复合载体 ,浸渍法担载一定量MoO3。用XRD、LRS和TPR等考察了MoO3在TiO2 /SiO2 表面的分散状态 ,中压固定床反应装置测定MoO3/TiO2 SiO2 、MoO3/SiO2 催化剂的噻吩加氢脱硫(HDS)、环己烯加氢 (HYD)和苯加氢 (BHD)活性。结果表明 ,(1 )TiO2 的加入有利于加强MoO3与载体之间的相互作用 ,促进MoO3在载体表面的分散 ,提高其分散阈值 ;(2 )当MoO3载量低于分散阈值时 ,其HDS、HYD和BHD活性随MoO3载量的增加而明显增大 ,但在高于分散阈值后 ,几乎保持不变 ,能明显体现负载型Mo催化剂在HDS、HYD和BHD反应中的阈值效应 ;(3 )MoO3 TiO2 /SiO2 催化剂的HDS、HYD和BHD活性都较MoO3/siO2 催化剂高 ,TiO2 能很大程度地改善MoO3/SiO2 催化剂的HDS、HYD活性。  相似文献   

19.
K2O对Co-Mo/MCM-41催化剂加氢脱硫性能的影响   总被引:1,自引:1,他引:0  
分别采用分步浸渍法和共浸渍法将K2O引入Co-Mo/MCM-41催化剂的前驱体中,制得的催化剂分别记作K-CoMo/MCM-41和KCoMo/MCM-41,并以质量分数0.8 %二苯并噻吩(DBT)的十氢萘溶液作模型化合物,考察了3种硫化物催化剂对其加氢脱硫(HDS)反应的催化性能。采用XRD、UV-Vis和TPR分析手段对所得的催化剂进行了表征。结果表明,采用共浸渍法引入K2O,不仅破坏了载体全硅MCM-41的结构,还降低了Co-Mo/MCM-41催化剂中八面体配位的Mo物种含量;采用分步浸渍法将K2O引入Co-Mo/MCM-41前驱体中,对催化剂中物种的分布和配位状态影响不大,但抑制了Co-Mo/MCM-41前驱体的还原。DBT的脱硫路径有直接脱硫(DDS)和加氢脱硫(HYD)两条路径,在Co-Mo/MCM-41硫化物催化剂上,主要通过DDS路径脱硫。KCoMo/MCM-41对DBT的DDS和HYD的催化活性都低于Co-Mo/MCM-41,因而总的DBT HDS反应活性也较低。而采用分步浸渍法引入K2O对Co-Mo/MCM-41总的DBT HDS催化活性影响不大,但提高了Co-Mo/MCM-41对DDS路径的催化活性,同时抑制了其对HYD路径的催化活性,降低了反应过程中氢气的消耗。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号