首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soils that have been acutely contaminated by heavy metals show distinct characteristics, such as colonization by metal-tolerant plant species and topsoil enrichment in weakly degraded plant debris, because biodegradation processes are strongly inhibited by contamination. Such an organic topsoil, located downwind of an active zinc smelter and extremely rich in Zn (approximately 2%, dry weight), was investigated by X-ray diffraction, synchrotron-based X-ray microfluorescence, and powder- and micro-extended X-ray absorption fine structure (EXAFS) spectroscopy for Zn speciation and by isotopic dilution for Zn lability. EXAFS spectra recorded on size fractions and on selected spots of thin sections were analyzed by principal component analysis and linear combination fits. Although Zn primary minerals (franklinite, sphalerite, and willemite) are still present (approximately 15% of total Zn) in the bulk soil, Zn was found to be predominantly speciated as Zn-organic matter complexes (approximately 45%), outer-sphere complexes (approximately 20%), Zn-sorbed phosphate (approximately 10%), and Zn-sorbed iron oxyhydroxides (approximately 10%). The bioaccumulated Zn fraction is likely complexed to soil organic matter after the plants' death. The proportion of labile Zn ranges from 54 to 92%, depending on the soil fraction, in agreement with the high proportion of organically bound Zn. Despite its marked lability, Zn seems to be retained in the topsoil thanks to the huge content of organic matter, which confers to this horizon a high sorption capacity. The speciation of Zn in this organic soil horizon is compared with that found in other types of soils.  相似文献   

2.
Modeling iron binding to organic matter   总被引:1,自引:0,他引:1  
The aim of the present work is to model iron speciation during its interaction with natural organic matter. Experimental data for iron speciation were achieved with an insolubilised humic acid used as an organic matter analogue for 30microM to 1.8 mM total iron concentrations and 2< or = pH< or = 5.5. IHA was found to be able to impose its redox potential to the solution and therefore the Fe(ll)/Fe(lll) ratio. Model VI and the NICA-Donnan model have been adjusted to experimental results of acid-base titrations, total iron measurements, and redox speciation in solution. They both describe well pH and concentration dependence of iron adsorption. For high iron concentration, Fe(lll) solution activity is limited by precipitation of a poorly ordered Fe oxyhydroxide with a higher solubility (log Ks = 5.6-5.7) than ferryhydrite described in the litterature.  相似文献   

3.
We tested the controls of metal geochemistry in sediments collected from an extremely contaminated Chinese bay on metal assimilation by marine mussels and clams. Metal speciation in the contaminated sediments, quantified by the Tessier operational extraction method, was significantly dependent on metal concentrations in the sediments. The fractions of Cd in the easily exchangeable and carbonate phases increased, while the reducible and residue phases decreased with increasing Cd concentration. The majority (72-91%) of Cr was associated with the residue component with the remainder of Cr in the organic matter and reducible phases. Zn in carbonate phase increased, whereas in the organic matter and residue phases it decreased with increasing Zn concentration. The bioavailability of Cd, Cr, and Zn to marine green mussels (Perna viridis) and clams (Ruditapes philippinarum) was quantified using radiotracer spiked technique with concurrent measurements of speciation of spiked metals. There was a significant correlation between the Cd assimilation efficiency (AE) by both mussels and clams and Cd partitioning in the easily exchangeable and reducible phases. In contrast to previous studies, a negative correlation was found between the Cd AE and its total concentration in sediment, likely caused by the saturation of Cd binding sites in the gut or by its antagonistic interaction with a very high Zn concentration in these collected sediments. In contrast, there was no significant correlation between the AEs of Cr or Zn and any of their geochemical phases or their concentrations. The metal AEs were further quantified by experimentally manipulating different concentrations and ratios of acid volatile sulfide (AVS) and simultaneously extractable metals (SEM). There was no statistically significant relationship between the AEs of the three metals and the concentrations of AVS and SEM or [SEM-AVS]. Geochemical controls on metal assimilation from contaminated sediment are therefore only relatively apparent for Cd. The influences of metal speciation on metal bioavailability can be confounded by the degree to which sediments are contaminated with metals.  相似文献   

4.
目的 探究施用沼液对槟榔芋根区土壤理化性质及重金属含量的影响。方法 采集连续施用沼液6年和未施用沼液的槟榔芋种植地块土壤, 测定土壤中Cu、Zn、Pb、Cd、Cr、Hg、As共7种重金属的含量并进行污染风险评价, 同时测定土壤的基本理化指标, 分析土壤中重金属含量与土壤理化性质间的相关性。结果 长期沼液灌溉会显著增加槟榔芋根区土壤中有机质、碱解氮和速效钾含量, 但也会导致土壤中Cu、Zn、Pb、Cd、Cr显著累积, 尤其Cu和Zn含量均超出了GB 15618—2018中规定的风险筛选值。连续施用沼液增加了土壤重金属的综合污染水平和潜在生态风险, 总体呈现轻度污染等级, 具有中等水平的潜在生态风险, 其中Cu对综合污染水平的贡献率最大, Cd和Hg对综合潜在生态风险的贡献率最大。土壤中Cu、Zn、Pb、Cd、Cr之间可能存在污染同源性, 其含量基本与土壤有机质、碱解氮和速效钾呈极显著正相关, 与速效磷呈显著负相关。结论 沼液还田虽然会提高槟榔芋根区土壤整体养分状况, 但长期沼液灌溉也增加了土壤重金属的污染风险, 尤其是Cu、Cd、Hg可能引起的污染问题要引起重视。  相似文献   

5.
Solid-solution speciation and phytoavailability of copper and zinc in soils   总被引:2,自引:0,他引:2  
The soil solution speciation and solid-phase fractionation of copper (Cu) and zinc (Zn) in 11 typical uncontaminated soils of South Australia were assessed in relation to heavy metal phytoavailability. The soils were analyzed for pH (4.9-8.4), soil organic matter content (3.5 to 23.8 g of C kg(-1)), total soil solution metal concentrations, Cu8 (49-358 microg kg(-1)) and Zn8 (121-582 microg kg(-1)), and dissolved organic matter (DOM) (69-827 mg of C L(-1)). The solid-liquid partition coefficient (Kd) ranged from between 13.9 and 152.4 L kg(-1) for Cu and 22.6 to 266.3 L kg(-1) for Zn. The phytoavailability of Cu and Zn could be predicted significantly using an empirical model with the solid-phase fractions of Cu and Zn, as obtained from selective sequential extraction scheme, as components. Phytoavailable Cu and Zn were found to significantly correlate with fulvic complex Cu (r= 0.944, P < 0.0001) and exchangeable Zn (r = 0.832, P = 0.002), respectively. The fulvic complex Cu was found to explain 89.2% of the variation in phytoavailable Cu, where as, the exchangeable Zn together with fulvic complex Zn could explain 78.9% of the variation in phytoavailable Zn. The data presented demonstrate the role of solid-phase metal fractions in understanding the heavy metal phytoavailability. The assessment of the role of solid-phase fractions in heavy metal phytoavailability is a neglected area of study and deserves close attention.  相似文献   

6.
The aim of this study is to predict the solid-solution partitioning of heavy metals in river flood plain soils. We compared mechanistic geochemical modeling with a statistical approach. To characterize the heavy metal contamination of embanked river flood plain soils in The Netherlands, we collected 194 soil samples at 133 sites distributed in the Dutch part of the Rhine and Meuse river systems. We measured the total amounts of As, Cd, Cr, Cu, Ni, Pb, and Zn in the soil samples and the metal fraction extractable by 2.5 mM CaCl2. We found a strong correlation between heavy metal contamination and organic matter content, which was almost identical for both river systems. Speciation calculations by a fully parametrized model showed the strengths and weaknesses of the mechanistic approach. Cu and Cd concentrations were predicted within one log scale, whereas modeling of Zn and Pb needs adjustment of some model parameters. The statistical fitting approach produced better results but is limited with regard to the understanding it provides. The log RMSE for this approach varied between 0.2 and 0.32 for the different metals. The careful modeling of speciation and adsorption processes is a useful tool for the investigation and understanding of metal availability in river flood plain soils.  相似文献   

7.
The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-rayfluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest O(i) samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases (approximately 20-35%) and SOM (-65-80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility.  相似文献   

8.
为了解长沙烟区烟叶重金属含量与土壤重金属含量及土壤性质的关联规律,采用盆栽试验研究了该区域不同性质土壤烟叶中镉(Cd)、铅(Pb)、汞(Hg)、砷(As)及铬(Cr)的含量,并对烟叶中的重金属含量与对应的土壤中重金属含量及土壤理化性质进行了相关性分析。结果表明:烟叶中重金属富集系数Cd & gt; Hg & gt; Pb & gt; Cr & gt; As,表明烟叶是易富集Cd的作物;烟叶中Cd含量与土壤pH值和有机质含量呈显著负相关性,与速效磷呈显著正相关性;烟叶中Pb含量与土壤有机质含量呈极显著负相关性,与土壤CEC呈显著负相关性;烟叶中Cr含量与土壤有机质含量呈极显著负相关性;烟叶中As含量与土壤中速效磷呈极显著负相关性;烟叶中Cr、Cd和Pb含量分别与土壤中Cr、Cd和Pb存在显著正相关性。   相似文献   

9.
Acidity (pH) has been realized to be the most important soil characteristic that modulates bioavailability of heavy metals by affecting both the chemical speciation of metals in soil and the metal binding to the active sites on biota. In this work, we show that besides soil pH, metal bioavailability also depends to a certain extent on the type of soil. A better understanding of the role of soil type in regulating metal availability can be achieved with the analysis of soil composition and with calculations using chemical speciation models. Results of pot experiments, in which three different soils were spiked with nickel, show that the EC50 of total nickel in decreasing the biomass production of oats varies widely (0.7-22.5 mmol kg(-1) soil, more than 30 times). pH (4.7-7.0) is the most important factor, explaining up to a factor of 14 difference of nickel bioavailability in the soils. The remaining variation is caused by other differences in soil composition (soil type). The bioavailability and toxicity of nickel in the organic matter-rich soil studied is less than half of that in the sandy and clay soil studied at a similar pH. The chemical calculations using a multi-surface speciation model show that soil organic matter binds Ni much stronger than clay silicates and iron (hydr)oxides within the acidic pH range, which supports the experimental findings. In all three soils, the EC50 of Ni expressed in terms of Ni in 0.01 M CaCl2 soil extraction is rather stable (24-58 microM), suggesting the possibility to use this extraction as an estimation of metal availability in soil.  相似文献   

10.
Speciation of iodine in a soil-water system was investigated to understand the mechanism of iodine mobility in surface environments. Iodine speciation in soil and pore water was determined by K-edge XANES and HPLC-ICP-MS, respectively, for samples collected at a depth of 0-12 cm in the Yoro area, Chiba, Japan. Pore water collected at a 0-6 cm depth contained 50%-60% of organic iodine bound to dissolved organic matter, with the other portion being I(-). At a 9-12 cm depth, 98% of iodine was in the form of dissolved I(-). In contrast, XANES analysis revealed that iodine in soil exists as organic iodine at all depths. Iodine mapping of soil grains was obtained using micro-XRF analysis, which also indicated that iodine is bound to organic matter. The activity of laccase, which has the ability to oxidize I(-) to I(2), was high at the surface of the soil-water layer, suggesting that iodide oxidizing enzymes can promote iodine organification. The distribution coefficient of organic iodine in the soil-water system was more than 10-fold greater than that of iodide. Transformation of inorganic iodine to organic iodine plays an important role in iodine immobilization, especially in a surface soil-water system.  相似文献   

11.
A 0.01 M CaCl(2) extraction is often used to asses the bioavailability of plant nutrients in soils. However, almost no correlation was found between selenium (Se) in the soil extraction and Se content in grass. The recently developed anion Donnan membrane technique was used to analyze chemical speciation of Se in the 0.01 M CaCl(2) extractions of grassland soils and fractionation of DOC (dissolved organic carbon). The results show that most of Se (67-86%) in the extractions (15 samples) are colloidal-sized Se. Only 13-34% of extractable Se are selenate, selenite and small organic Se (<1 nm). Colloidal Se is, most likely, Se bound to or incorporated in colloidal-sized organic matter. The dominant form of small Se compounds (selenate, selenite/small organic compounds) depends on soil. A total of 47-85% of DOC is colloidal-sized and 15-53% are small organic molecules (<1 nm). In combination with soluble S (sulfur) and/or P (phosphor), concentration of small DOC can explain most of the variability of Se content in grass. The results indicate that mineralization of organic Se is the most important factor that controls Se availability in soils. Competition with sulfate and phosphate needs to be taken into account. Further research is needed to verify if concentration of small DOC is a good indicator of mineralization of soil organic matter.  相似文献   

12.
This study was carried out to assess the influence of physicochemical properties on PAH sequestration in sterile sewage sludge-amended arable soil. Radiolabeled phenanthrene (14C-9-Phe), pyrene (14C-4,5,9,10-Pyr), and benzo[a]pyrene (14C-7-B[a]P) were spiked and aged for up to 525 days in sterile soil microcosms. The degree of compound sequestration at various sampling times was determined by their extractability with organic solvents and release from soil residues by base saponification extraction. The amount of PAH extractable by butanol and dichloromethane decreased with compound aging in the soil. The decrease in PAH extractability with aging, and the formation of nonextractable bound residues, increased with compound molecular weight, KOW and KOC. The amount of total extractable PAH determined by sequential dichloromethane soxtec and methanolic saponification extraction decreased from 98%, 97%, and 94% at day 10 to 95%, 91%, and 77%, respectively for 14C-9-Phe, 14C-4,5,9,10-Pyr, and 14C-7-B[a]P after 525 days aging. During the same aging period there was an increase in the amount of PAH released from the soil by base saponification extraction, suggesting a progressive diffusion of PAHs into hydrolyzable and recalcitrant organic matter and mineral phases of soil. Calculated half-lives for the apparent loss of PAHs by sequestration in this experiment were dependent on the method used to extract them from soil. These half-lives ranged from 96 to 1,789 days depending on the compound, and are in agreement with values obtained from previous spiking experiments using nonsterile soils. These results suggest that a considerable fraction of PAHs assumed degraded in previous studies may have been sequestered within the organic carbon and, to a lesser extent, mineral phases of soil.  相似文献   

13.
The experimental complexation of the lanthanides (Sc, Y, and rare earth elements) with Suwannee river fulvic acid, Leonardite coal humic acid, and Elliot soil humic acid is described with Humic Ion-Binding Model V. The fitted intrinsic equilibrium constants for metal-proton exchange, pKMHA, for Eu3+ are similar to previously published experimental fits, and linear free energy relationship (LFER) estimated values. The experimentally observed lanthanide contraction effect in REE-humic complex stability is reflected in the gradual decrease in pKMHA from La to Lu. In Model V, a decrease in pKMHA from La to Lu indicates an increase in complex stability. Fitted pKMHA values for heavy REE are lower than those estimated by LFERs. Consequently, REE fractionation by humic substances complexation could be more pronounced than previously thought. Recommended pKMHA values for lanthanide-fulvic and -humic acid complexation are derived by superimposing the fitted trends in pKMHA for all REE, i.e., the decrease in pKMHA from La to Lu, on the average Eu pKMHA value for all literature datasets. These results will allow modeling assessments of organic matter induced REE fractionation in aquatic environments, taking into account changes in pH, ionic strength, and ion competition. A simulation of dissolved REE speciation in an average world river suggests that organic matter outcompetes carbonate complexation, even under alkaline conditions.  相似文献   

14.
Copper retention by ferrihydrite, leaf compost, and montmorillonite was studied over 8 months in systems that emulate a natural soil where different solid phases compete for Cu through a common solution in a compartmentalized batch reactor. Copper speciation in solution (total dissolved, DPASV-labile, and free) and exchangeable and total Cu in individual solid phases were determined. Organic carbon in solution (DOC) and that retained by the mineral phases were also determined. Cu sorption reached steady-state after 4 months and accounted for 80% of the Cu initially added to the system (0.15 mg L(-1)). The remaining 20% stayed in solution as nonlabile (82.8%), labile (17%), and free (0.2%) Cu species. Copper sorption followed the order organic matter > silicate clays > iron oxides. Within each solid phase, exchangeable Cu was < or = 10% of the total Cu sorbed. DOC reached steady state (22 mg L(-1)) after 4 months and seemed to control Cu solubility and sorption behavior by the formation of soluble Cu-DOC complexes and by sorbing onto the mineral phases. DOC sorption onto ferrihydrite prevented Cu retention by this solid phase. Using a multicomponent system and 8 months equilibrations, we were able to capture some of the more important aspects of the complexity of soil environments bytaking into account diffusion processes and competition among solid- and solution-phase soil constituents in the retention of a metal cation.  相似文献   

15.
The objective of this study was to investigate the influence of root exudation of organic acid anions on the speciation of major and trace metal cations in the rhizosphere of Lupinus albus cluster roots. Plants were grown in rhizoboxes containing repacked weakly acidic loam. Bulk soil solutions and, during the lifetime of cluster roots, rhizosphere solutions were collected using micro suction cups. During organic acid anion exudation bursts, metals in the rhizosphere of cluster roots were strongly mobilized. The concentrations of dissolved organic carbon derived from soil organic matter increased parallel to organic acid anions. Speciation calculations revealed that, during exudation, Al, Ca, Mn, and Zn in the cluster root rhizosphere were mainly bound with citrate, while Cu and Pb were always strongly bound to soil-derived dissolved organic matter. Our results indicate that cluster root exudation led on one hand to direct mobilization and complexation of metals like Al, Fe, and Zn by citrate and on the other hand to the mobilization of soil organic matter which complexes and solubilizes Cu and Pb.  相似文献   

16.
Combustion processes are the most important source of metal in the atmosphere and need to be better understood to improve flue gas treatment and health impact studies. This combustion experiment was designed to study metal partitioning and metal speciation in the gaseous and particulate phases. A light fuel oil was enriched with 15 organometallic compounds of the following elements: Pb, Hg, As, Cu, Zn, Cd, Se, Sn, Mn, V, Tl, Ni, Co, Cr, and Sb. The resulting mixture was burnt in a pilot-scale fuel combustion boiler under controlled conditions. After filtration of the particles, the gaseous species were sampled in the stack through a heated sampling tube simultaneously by standardized washing bottles-based sampling techniques and cryogenically. The cryogenic samples were collected at -80 degrees C for further speciation analysis by LT/GC-ICPMS. Three species of selenium and two of mercury were evidenced as volatile species in the flue gas. Thermodynamic predictions and experiments suggest the following volatile metal species to be present in the flue gas: H2Se, CSSe, CSe2, SeCl2, Hg(0), and HgCl2. Quantification of volatile metal species in comparison between cryogenic techniques and the washing bottles-based sampling method is also discussed. Concerning metal partitioning, the results indicated that under these conditions, at least 60% (by weight) of the elements Pb, Sn, Cu, Co, Tl, Mn, V, Cr, Ni, Zn, Cd, and Sb mixed to the fuel were found in the particulate matter. For As and Se, 37 and 17%, respectively, were detected in the particles, and no particulate mercury was found. Direct metal speciation in particles was performed by XPS allowing the determination of the oxidation state of the following elements: Sb(V), Tl(III), Mn(IV), Cd(II), Zn(II), Cr(III), Ni(II), Co(II), V(V), and Cu(II). Water soluble species of inorganic Cr, As, and Se in particulate matter were determined by HPLC/ICP-MS and identified in the oxidation state Cr(III), As(V), and Se(IV).  相似文献   

17.
A gel probe equilibrium sampler has been developed to study arsenic (As) geochemistry and sorption behavior in sediment porewater. The gels consist of a hydrated polyacrylamide polymer, which has a 92% water content. Two types of gels were used in this study. Undoped (clear) gels were used to measure concentrations of As and other elements in sediment porewater. The polyacrylamide gel was also doped with hydrous ferric oxide (HFO), an amorphous iron (Fe) oxyhydroxide. When deployed in the field, HFO-doped gels introduce a fresh sorbent into the subsurface thus allowing assessment of in situ sorption. In this study, clear and HFO-doped gels were tested under laboratory conditions to constrain the gel behavior prior to field deployment. Both types of gels were allowed to equilibrate with solutions of varying composition and re-equilibrated in acid for analysis. Clear gels accurately measured solution concentrations (+/-1%), and As was completely recovered from HFO-doped gels (+/-4%). Arsenic speciation was determined in clear gels through chromatographic separation of the re-equilibrated solution. For comparison to speciation in solution, mixtures of As(III) and As(V) adsorbed on HFO embedded in gel were measured in situ using X-ray absorption spectroscopy (XAS). Sorption densities for As(III) and As(V) on HFO embedded in gel were obtained from sorption isotherms at pH 7.1. When As and phosphate were simultaneously equilibrated (in up to 50-fold excess of As) with HFO-doped gels, phosphate inhibited As sorption by up to 85% and had a stronger inhibitory effect on As(V) than As(III). Natural organic matter (>200 ppm) decreased As adsorption by up to 50%, and had similar effects on As(V) and As(III). The laboratory results provide a basis for interpreting results obtained by deploying the gel probe in the field and elucidating the mechanisms controlling As partitioning between solid and dissolved phases in the environment.  相似文献   

18.
The complexation of heavy metals with dissolved organic matter (DOM) in the environment influences the solubility and mobility of these metals. In this paper, we measured the complexation of Cu, Cd, Zn, Ni, and Pb with DOM in the soil solution at pH 3.7-6.1 using a Donnan membrane technique. The results show that the DOM-complexed species is generally more significant for Cu and Pb than for Cd, Zn, and Ni. The ability of two advanced models for ion binding to humic substances, e.g., model VI and NICA-Donnan, in the simulation of metal binding to natural DOM was assessed by comparing the model predictions with the measurements. Using the default parameters of fulvic and humic acid, the predicted concentrations of free metal ions from the solution speciation calculation using the two models are mostly within 1 order of magnitude difference from the measured concentrations, except for Ni and Pb in a few samples. Furthermore, the solid-solution partitioning of the metals was simulated using a multisurface model, in which metal binding to soil organic matter, dissolved organic matter, clay, and iron hydroxides was accounted for using adsorption and cation exchange models (NICA-Donnan, Donnan, DDL, CD-MUSIC). The model estimation of the dissolved concentration of the metals is mostly within 1 order of magnitude difference from those measured except for Ni in some samples and Pb. The solubility of the metals depends mainly on the metal loading over soil sorbents, pH, and the concentration of inorganic ligands and DOM in the soil solution.  相似文献   

19.
The long-term speciation of Zn in contaminated soils is strongly influenced by soil pH, clay, and organic matter content as well as Zn loading. In addition, the type of Zn-bearing contaminant entering the soil may influence the subsequent formation of pedogenic Zn species, but systematic studies on such effects are currently lacking. We therefore conducted a soil incubation study in which four soils, ranging from strongly acidic to calcareous, were spiked with 2000 mg/kg Zn using either ZnO (zincite) or ZnS (sphalerite) as the contamination source. The soils were incubated under aerated conditions in moist state for up to four years. The extractability and speciation of Zn were assessed after one, two, and four years using extractions with 0.01 M CaCl(2) and Zn K-edge X-ray absorption fine structure (XAFS) spectroscopy, respectively. After four years, more than 90% of the added ZnO were dissolved in all soils, with the fastest dissolution occurring in the acidic soils. Contamination with ZnO favored the formation of Zn-bearing layered double hydroxides (LDH), even in acidic soils, and to a lesser degree Zn-phyllosilicates and adsorbed Zn species. This was explained by locally elevated pH and high Zn concentrations around dissolving ZnO particles. Except for the calcareous soil, ZnS dissolved more slowly than ZnO, reaching only 26 to 75% of the added ZnS after four years. ZnS dissolved more slowly in the two acidic soils than in the near-neutral and the calcareous soil. Also, the resulting Zn speciation was markedly different between these two pairs of soils: Whereas Zn bound to hydroxy-interlayered clay minerals (HIM) and octahedrally coordinated Zn sorption complexes prevailed in the two acidic soils, Zn speciation in the neutral and the calcareous soil was dominated by Zn-LDH and tetrahedrally coordinated inner-sphere Zn complexes. Our results show that the type of Zn-bearing contaminant phase can have a significant influence on the formation of pedogenic Zn species in soils. Important factors include the rate of Zn release from the contaminant phases and effects of the contaminant phase on bulk soil properties and on local chemical conditions around weathering contaminant particles.  相似文献   

20.
采用电感耦合等离子体质谱和原子荧光形态检测法分析宁海、象山、舟山3 个养殖区内常见3 种海产贝类(牡蛎、缢蛏、血蚶)中Cd、Cu、Cr、Pb、As、Hg等重金属的总含量,并采用化学逐级提取法系统研究水煮加工前后贝类中Cd、Cu、Cr、Pb重金属的形态分布和As、Hg中有机和无机的形态分布。结果表明,3 个养殖区牡蛎、缢蛏、血蚶中Cd、Cr、Cu、Pb、As均有不同程度的超标,且Cu和Cd、Cr和Pb之间存在显著相关性,As的超标检出率达77.78%,Hg的残留量均低于限量标准;此外金属形态分析研究结果表明,水煮加工方式对Cd、Cu、Cr、Pb中酸可提取态、氧化结合态、有机结合态和残余态的含量影响较大,而对As和Hg的有机态和无机态影响较小。海洋贝类中重金属元素的含量和水煮加工前后该元素形态的变化量可作为评价海洋贝类中重金属生物有效性的指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号