首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A capillary tube‐based CO2 heat pump is unique because of the transcritical nature of the system. The transcritical cycle has two independent parameters, pressure and temperature, unlike the subcritical cycle. A comparative study for various operating conditions, based on system COP and exergetic efficiency, of a capillary tube and a controllable expansion valve‐based transcritical carbon dioxide heat pump systems for simultaneous heating and cooling at 73 and 4°C, respectively, is presented here. Two optimized capillary tubes having diameter of 1.5 and 1.6 mm are compared with an equivalent controllable throttle valve. Heat transfer and fluid flow effects are included in the gas cooler and evaporator model and capillary tube employs the homogeneous flow model to simulate two‐phase flow. Subcritical and supercritical thermodynamic and transport properties of CO2 are calculated employing a precision in‐house property code. Optimization of effective distribution of total heat exchanger area ratio between gas cooler and evaporator is investigated. The exergetic efficiency is better in case of the capillary tube than that of a controllable throttle valve‐based system. Capillary tube‐based system is shown to be quite flexible regarding changes in ambient temperature, almost behaving to offer an optimal pressure control just like the controllable expansion valve yielding both, maximum system COP and maximum exergetic efficiency. Relatively at a smaller diameter, the capillary tube exhibits better exergetic efficiency. Capillary tube length is the critical parameter that influences system optimum conditions. The exergy flow diagram exhibits that compressor, gas cooler and capillary tube contribute a larger share, in that order, to system irreversibility. It is fairly established in this study that a capillary tube can be a good engineering option for small capacity systems in lieu of an expansion valve, which has been thought of as the only possible solution to attain the pressure optimization, an important feature of all transcritical CO2 systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
A low capacity twin‐bed adsorption refrigeration system has been built with R134a as a refrigerant and activated carbon as the adsorbent. Simple tube‐in‐tube heat exchangers have been fabricated and have been used as the adsorber beds. Activated carbon (granular type) has been filled in the annular space of the inner tube and outer tube. A plate heat exchanger has been used as the condenser and the temperature of cooling water has been maintained between 25°C and 30°C, also the evaporator has been custom designed as per requirements. A mathematical model has also been developed and the results obtained have been found to be comparable. While operating the system in the single‐bed mode a cooling power of 250.4 W has been obtained with a coefficient of performance (COP) of 0.38 with an average evaporator temperature of 18.4°C against a predicted value of 263.7 W with a COP of 0.41. While operating in the twin‐bed mode a cooling power of 281.3 W with a COP of 0.47 with an average evaporator temperature of 17.6°C has been obtained against a predicted value of 294.5 W with a COP of 0.52.  相似文献   

3.
In this study, the behaviour of a vapour‐compression refrigeration cycle, for different refrigerants such as NH3, R‐12, R‐22 and HFC‐134a was investigated using the exergy method. The cooling load of the plant and the saturation‐temperature of the cold chamber were held constant, whereas the saturation‐temperatures of the evaporator and the condenser were varied from 303 to 313 K and 258 to 248 K, respectively. The irreversibility rates (or exergy destruction rates) of sub‐regions for the whole cycle, using energy and exergy analysis, were determined for each refrigerant. The effects of changes in the saturation‐temperature in the condenser and evaporator on the irreversibility rate of the cycle were obtained for each refrigerant. The relations between the total irreversibility rate of the plant and the irreversibility rate of the condenser and the evaporator were determined for different values of saturation temperatures of the condenser and the evaporator. The COP of the cycle and the rational efficiency were determined for each of the refrigerants and compared with each other. Among the refrigerants used, R‐12 was found to be the most economical refrigerant as compared with the others. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
The thermoeconomic behaviour of a nanoparticle seeded single effect LiBr‐H2O absorption refrigeration system (ARS) is investigated for a small scale application. In the proposed method, alumina nanoparticles with volume concentrations of 3%, 5%, and 7% are dispersed into an aqua lithium bromide solution. The multiobjective heat transfer search algorithm is employed to examine the design trade‐off between the coefficient of performance (COP) and total annualized cost (TAC). To analyze the overall performance of the system, the influence of five design parameters, namely the temperatures of the generator, absorber, evaporator, condenser and heat exchanger pipe diameter, are studied. It is found that with an increase in the COP, the TAC of the system is initially raised marginally, and after that, raised rigorously with further increment. The comparative results indicate that the COP and TAC of the nanofluid based ARS system are increased by about 7% and decreased by about 3.2%, respectively, corresponding to the Pareto points of the base ARS system. A lower break‐even point of about 2.6 years is achieved for the ARS system containing nanoparticles compared to the base ARS system. Overall, the ARS system containing 5% nanoparticles is the best solution from a thermodynamic and economic point of view.  相似文献   

5.
This paper presents a novel design scheme for traveling wave thermo‐acoustic Stirling engines (TASEs) based on a target frequency using genetic algorithm (GA). First, the effects of engine design parameters on the system performance are studied via root locus method. Accordingly, it is found that the resonator length, the inertance diameter, and the hot gas temperature are the most effective parameters in the engine design procedure. Next, the relation between the closed‐loop poles positions of the thermo‐acoustic system and the effective design variables are described parametrically. Consequently, in order to estimate the optimum values of the effective design parameters as well as the unknown positions of the nondominant poles, an appropriate fitness function based on the desired engine frequency is proposed. Subsequently, a GA is used to achieve the optimal values of design parameters so as to minimize the considered cost function. Finally, the validity of the proposed design technique is verified by comparing the obtained results with the available data of an experimental case study.  相似文献   

6.
A computational model is developed for the parametric investigation of single‐effect and series flow double‐effect LiBr/H2O absorption refrigeration systems. The effects of generator, absorber, condenser, evaporator and dead state temperatures are examined on the performance of these systems. The parameters computed are coefficient of performance (COP), exergy destruction rates, thermal exergy loss rates, irreversibility and exergetic efficiency. The results indicate that COP and exergetic efficiency of both the systems increase with increase in the generator temperature. There exist different optimum values of generator temperature for maximum COP and maximum exergetic efficiency. The optimum generator temperature is lower corresponding to maximum exergetic efficiency as compared to optimum generator temperature corresponding to maximum COP. The effect of increase in absorber, condenser and evaporator temperatures is to decrease the exergetic efficiency of both the systems. The irreversibility is highest in absorber in both systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
In this study, superheating and sub‐cooling heat exchangers in vapor‐compressed refrigeration system are analyzed from thermodynamics and economical (refrigeration system operation cost, investment cost) viewpoints. Using four different refrigerants (R22, R502, R134a and R404a), the temperature of condenser at the interval of (35–55°C) and temperature of evaporator at the interval of (?10 to 10°C) have been obtained from the calculation process. The second law analysis (analysis of irreversibility) of a refrigeration system is carried out and then the whole system is optimized thermo‐economically. As a result of calculations, optimum superheating and sub‐cooling temperatures of heat exchanger (superheating, sub‐cooling) areas corresponding to these temperatures are obtained. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Analytical and experimental studies were performed on a direct‐expansion solar‐assisted heat pump (DX‐SAHP) water heating system, in which a 2 m2 bare flat collector acts as a source as well as an evaporator for the refrigerant. A simulation model was developed to predict the long‐term thermal performance of the system approximately. The monthly averaged COP was found to vary between 4 and 6, while the collector efficiency ranged from 40 to 60%. The simulated results were used to obtain an optimum design of the system and to determinate a proper strategy for system operating control. The effect of various parameters, including solar insolation, ambient temperature, collector area, storage volume and speed of compressor, had been investigated on the thermal performance of the DX‐SAHP system, and the results had indicated that the system performance is governed strongly by the change of solar insolation, collector area and speed of compressor. The experimental results obtained under winter climate conditions were shown to agree reasonably with the computer simulation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
Cost optimization, which is expressed as a set of analytical variables, is a key objective in economic design approaches of shell‐and‐tube heat exchangers. This study has provided new design techniques based on tube bundle effect on the economic optimization design of shell‐and‐tube heat exchangers. Also the objective of this paper is to develop the cost estimating for the new modified shell‐and‐tube heat exchangers by introducing new objective functions. According to the results the best configuration choice will obviously be the one with the least irreversibility, that is, with the lowest exergy destruction rate and lower annual capital cost. Also, the combined reduction of annual capital investment and operating cost by the new design technique led to a decrease in the overall costs of about 10% to 24% in comparison with original design. So the proposed design technique shows potential for improvement and economic optimization of shell‐and‐tube heat exchangers.  相似文献   

10.
The aim of this paper is to model the steady‐state performance of a vapour‐compression liquid heat pump with the use of neural networks. The model uses a generalized radial basis function (GRBF) neural network. Its input vector consists only of parameters that are easily measurable, i.e. the chilled water outlet temperature from the evaporator, the cooling water inlet temperature to the condenser and the evaporator capacity. The model then predicts relevant performance parameters of the heat pump, especially the coefficient of performance (COP). Models are developed for three different refrigerants, namely LPG, R22 and R290. It is found that not every model achieves the same accuracy. Predicted COP values, when LPG or R22 are used as refrigerant, are usually accurate to within 2 per cent, whereas many predictions for R290 deviate more than ±10 per cent. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
The performance of a vapour compression system that uses an ejector as an expansion device was investigated. In the analysis, a two‐phase constant area ejector flow model was used. R134a was selected as the refrigerant. According to the obtained results, for any operating temperature there are different optimum values of pressure drop in the suction chamber, ejector area ratio, ejector outlet pressure and cooling coefficient of performance (COP). As the difference between condenser and evaporator temperatures increases, the improvement ratio in COP rises whereas ejector area ratio drops. The minimum COP improvement ratio in the investigated field was 10.1%, while its maximum was 22.34%. Even in the case of an off‐design operation, the performance of a system with ejector is higher than that of the basic system. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
《Energy Conversion and Management》2005,46(13-14):2053-2067
This paper presents the exergetic analysis and optimization of a transcritical carbon dioxide based heat pump cycle for simultaneous heating and cooling applications. A computer model has been developed first to simulate the system at steady state for different operating conditions and then to evaluate the system performance based on COP as well as exergetic efficiency, including component wise irreversibility. The chosen system includes the secondary fluids to supply the heating and cooling services, and the analyses also comprise heat transfer and fluid flow effects in detail. The optimal COP and the exergetic efficiency were found to be functions of compressor speed, ambient temperature and secondary fluid temperature at the inlets to the evaporator and gas cooler and the compressor discharge pressure. An optimization study for the best allocation of the fixed total heat exchanger inventory between the evaporator and the gas cooler based on heat transfer area has been conducted. The exergy flow diagram (Grassmann diagram) shows that all the components except the internal heat exchanger contribute significantly to the irreversibilities of the system. Unlike a conventional system, the expansion device contributes significantly to system irreversibility. Finally, suggestions for various improvement measures with resulting gains have been presented to attain superior system performance through reduced component irreversibilities. This study is expected to offer useful guidelines for system design and its optimisation and help toward energy conservation in heat pump systems based on transcritical CO2 cycles.  相似文献   

13.
The goal of this study is to carry out exergy analyses for an experimental variable‐speed refrigeration system working with R404a in order to determine irreversibility rates and exergetic efficiencies of system components and the overall system. For this aim, an experimental refrigeration system was designed with a frequency inverter mounted on compressor electric motor. Controlling the rotational speed of the compressor with a frequency inverter is one of the best methods to vary the capacity of the refrigeration system. The experiments were made for different compressor electric motor frequencies. The results showed that at low‐frequency values, irreversibility rates of the system decreased and exergetic efficiencies were increased. In addition, the major irreversibility occurs in the compressor by 61.47–61.83% followed by condenser by 17.00–16.52%, evaporator by 12.39–13.73% and expansion valve by 6.24–6.76% for different compressor frequencies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A thermoeconomic analysis of a ground‐source heat pump (GSHP) system with a vertical or horizontal ground heat exchanger, a type of heat delivery system, was performed using the modified productive structure analysis method. In this analysis, the unit cost of geothermal heat delivered to a room using GSHP system was estimated. The unit cost of heat delivered was calculated to be $0.063/kWh for input of electricity with a unit cost of $0.140/kWh for a GSHP with a coefficient of performance (COP) of 3.27. Exergy destruction and monetary losses due to the irreversibility that occurs at each component of the system were also estimated. The unit cost of heat was found to be inversely proportional to the COP of the heat pump and proportional to the electricity input. The greatest monetary loss occurs in the geothermal heat exchanger in which considerable mass of brine flows in long pipes and in the fan‐coil unit which features a complex configuration of pipes in the air passages, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
By combining heat and power generation, mini‐combined and micro‐combined heat and power systems (MCHP) provide an efficient, decentralised means of power generation that can complement the composition of the electricity generation mix. Dynamic tools capable of handling transient system behaviour are required to assess MCHP efficiency beyond a mere static analysis based on steady‐state design parameters. Using a simulation of a cogeneration system, we combine exergetic definitions for different operational system states to quantify the overall system efficiency continuously over the whole period of operation. The concept of exergy allows direct comparison of different forms of energy. A sensitivity analysis was performed where we quantified the effect on MCHP overall performance under varying engine rotational speed, thermal energy storage size and fluid storage temperature in a range of MCHP simulations. We found that the exergetic quantity of natural gas used by the MCHP decreased slightly at higher engine speeds (?2% to ?4%). While the total amount of electricity generated is almost constant across the range of different engine output, more thermal exergy (up to +21%) can be recovered when the engine is operating at elevated speeds. Furthermore, selection of specific optimal thermal storage fluid temperatures can aid in improving system efficiency. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Water as a refrigerant (R718) is compared with some current natural (R717 and R290) and synthetic refrigerants (R134a, R12, R22, and R152a) regarding environmental issues including ozone depletion potential (ODP) and global warming potential (GWP), safety (toxicity and flammability), operating cost, refrigeration capacity and coefficient of performance (COP). A computer code simulating a simple vapour compression cycle was developed to calculate COPs, pressure ratios, outlet temperatures of the refrigerants from the compressor, and evaporator temperatures above which water theoretically yields better COPs than the other refrigerants investigated. The main difference of this study from other similar studies is that both evaporator temperature and condenser temperature are changed as changing parameters, but the temperature lift, which is the temperature difference between condenser and evaporator, are held constant and the irreversibility during the compression process is also taken into consideration by taking the isentropic efficiency different from 100%. It is found that for evaporator temperatures above 20°C and small temperature lift (5 K), R718 gives the highest COP assuming exactly the same cycle parameters. For medium temperature lifts (20–25 K), this evaporator temperature is above 35°C, whereas for even greater temperature lifts it decreases again. Furthermore, with increased values of polytropic efficiency, R718 can maintain higher COPs over other refrigerants, at lower evaporator temperatures. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
The thermal performance of two different schemes of solar‐assisted heat‐pump systems has been theoretically studied. In first scheme, the evaporator of the heat pump is taken directly as the solar collecting plate and always maintained at the ambient temperature. As there is no heat loss from the collecting plate, the thermal efficiency of the collector is high and equals the solar absorptivity of the collecting plate. As suggested, the heat‐pump evaporator of the second scheme is placed in a novel fresh water solar pond/tank with high efficiency. Since the evaporator operates at a relatively high temperature, the COP of the heat pump can be increased. The calculated results show that the COP of a solar‐assisted heat pump using the second scheme is considerably higher than that of the first scheme. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
A multieffect refrigeration system that is based on a waste‐heat‐driven organic Rankine cycle that could produce refrigeration output of different magnitudes at different levels of temperature is presented. The proposed system is integration of combined ejector–absorption refrigeration cycle and ejector expansion Joule–Thomson (EJT) cooling cycle that can meet the requirements of air‐conditioning, refrigeration, and cryogenic cooling simultaneously at the expense of industrial waste heat. The variation of the parameters that affect the system performance such as industrial waste heat temperature, refrigerant turbine inlet pressure, and the evaporator temperature of ejector refrigeration cycle (ERC) and EJT cycles was examined, respectively. It was found that refrigeration output and thermal efficiency of the multieffect cycle decrease considerably with the increase in industrial waste heat temperature, while its exergy efficiency varies marginally. A thermal efficiency value of 22.5% and exergy efficiency value of 8.6% were obtained at an industrial waste heat temperature of 210°C, a turbine inlet pressure of 1.3 MPa, and ejector evaporator temperature of 268 K. Both refrigeration output and thermal efficiency increase with the increase in turbine inlet pressure and ERC evaporator temperature. Change in EJT cycle evaporator temperature shows a little impact on both thermal and exergy efficiency values of the multieffect cycle. Analysis of the results clearly shows that the proposed cycle has an effective potential for cooling production through exploitation of lost energy from the industry. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a one‐zone steady‐state system model of an oil‐injected screw chiller. The model can be used as a design and optimization tool for system performance of multiple‐chiller plant in process industries. All major components of the system are modelled in a modular format including the oil‐injected screw compressor, shell and tube condenser, flooded evaporator and a high side‐float value. The model results are validated with the experimental data from a multiple‐chiller plant at a process industry. The validated results show that the part‐load ratio and the glycol–water temperature at the evaporator inlet significantly affect the system performance as compared to the temperature of cooling water entering the condenser. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents a steady‐state physical model for a variable speed vapor compression system. Its development and validation for a wide range of operating conditions are presented. The model requires as input parameters: compressor speed, static superheating degree and volumetric flow rates and temperatures of secondary fluids at the evaporator and condenser inlet. Using these input parameters, which can be easily obtained in this kind of facility, the model predicts the operating pressures, the temperature of secondary fluids at the evaporator and condenser outlet, the evaporator and condenser thermal capacities, the electric power consumed by the compressor and the coefficient of performance, COP. The experimental validation of the model has been carried out with 177 tests using R134a as working fluid, concluding that the model can predict the energetic performance of a variable speed vapor compression chiller with an error lower than ±10%. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号