首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
选用含氢量为1.4%的高含氢硅油(DH)和六甲基二硅氧烷(MM)为原料,强酸型离子交换树脂作催化剂,采用随机质心衍射优化法对1,1,1,3,5,5,5-七甲基三硅氧烷(MDHM)的合成工艺进行优化。此过程仅用了13次试验,优化所得工艺条件为:m(DH)∶m(MM)=1∶13.03,催化剂用量为6.34%,反应温度65.3℃,反应时间8.15 h,在该条件下所得产物的平均产率为39.56%。  相似文献   

2.
以含氢硅油和六甲基二硅氧烷(MM)为原料,在SO42-/ZrO2固体超强酸催化下进行调聚反应,制得1,1,1,3,5,5,5-七甲基三硅氧烷(MDHM)。考察了原料配比、反应温度、反应时间及催化剂用量对MDHM收率的影响,并用红外光谱及气相色谱-质谱联用分析对产物进行了表征。结果表明,MDHM的最佳合成工艺为:反应温度70℃,反应时间7 h,MM与含氢硅油的质量比4∶1,SO42-/ZrO2固体超强酸用量为投料总质量的4%;在此条件下,MDHM的收率为31%~34%,固体超强酸的使用次数达到16次,产品质量较高。  相似文献   

3.
以含氢硅油和六甲基二硅氧烷(MM)为原料,在SO4^2-/ZrO2固体超强酸催化下进行调聚反应,制得1,1,1,3,5,5,5-七甲基三硅氧烷(MDHM)。考察了原料配比、反应温度、反应时间及催化剂用量对MDHM收率的影响,并用红外光谱及气相色谱-质谱联用分析对产物进行了表征。结果表明,MDHM的最佳合成工艺为:反应温度70℃,反应时间7 h,MM与含氢硅油的质量比4∶1,SO4^2-/ZrO2固体超强酸用量为投料总质量的4%;在此条件下,MDHM的收率为31%-34%,固体超强酸的使用次数达到16次,产品质量较高。  相似文献   

4.
响应面法优化合成1,1,1,3,5,5,5-七甲基三硅氧烷   总被引:5,自引:1,他引:4       下载免费PDF全文
选用六甲基二硅氧烷(MM)和高含氢硅油(DH)为原料,强酸型离子交换树脂作催化剂,采用响应面优化法对1,1,1,3,5,5,5-七甲基三硅氧烷(MDHM)的合成工艺进行优化。在单因素实验的基础上,依次采用Plackett-Burman设计,最陡爬坡实验及Box-Behnken设计法进行工艺优化,以MDHM的质量分数为响应值作响应面,然后进行回归分析。实验结果表明,MDHM的最佳合成条件为:反应物质量比为m(DH):m(MM)=1:13.45,反应温度为62.5℃,催化剂用量为7.09%。在反应时间10 h的条件下,产物中MDHM的质量分数为40.62%,与模型预测值基本相符。通过研究温度对反应动力学的影响,进一步验证了所取温度和时间的合理性。  相似文献   

5.
聚醚改性三硅氧烷的合成工艺研究   总被引:2,自引:0,他引:2  
以烯丙基聚醚与七甲基三硅氧烷为原料,通过硅氢加成反应合成出聚醚改性三硅氧烷。用IR对其结构进行表征,研究了催化剂用量、反应温度、反应时间、烯丙基聚醚与七甲基三硅氧烷的量之比[n(醚)/n(硅)]对七甲基三硅氧烷转化率的影响以及七甲基三硅氧烷转化率与产物表面张力的关系。结果表明,较佳反应条件是n(醚)/n(硅)为1.2、铂原子相对于七甲基三硅氧烷的质量分数为0.00075%、反应时间1 h、反应温度100~110℃。在此条件下合成出的聚醚改性三硅氧烷的0.1%的水溶液的表面张力为20.3 mN/m,七甲基三硅氧烷的转化率为98.1%。  相似文献   

6.
以四甲基二氢二硅氧烷(HMM)与烯丙基缩水甘油醚(AGE)为原料,以Pt络合物为催化剂,通过硅氢加成反应合成1,3-二(3-缩水甘油丙基)-1,1,3,3-四甲基二硅氧烷,考察了配体种类、反应温度、反应时间、催化剂用量和原料配比等因素对硅氢加成反应的影响。实验结果表明:催化剂选用Pt-N(C2H5)3络合物,在催化剂用量为2.8×10-6 mol,原料配比n(AGE)∶n(HMM)=2.1∶1,反应温度为90℃,反应时间为90 min的条件下,环氧双封头的收率为89.3%。  相似文献   

7.
在氮气保护下,以烯丙基聚氧乙烯醚醋酸酯与七甲基三硅氧烷为原料,在Karstedt催化剂催化下反应,制得了聚醚酯改性三硅氧烷,讨论了反应物摩尔比、催化剂用量、反应温度和反应时间对制备聚醚酯改性三硅氧烷性能的影响。结果表明,当反应物摩尔比为1.4∶1.0,催化剂用量为0.10%(质量分数),反应温度为110~120℃,反应时间为2 h,制得的聚醚酯改性三硅氧烷表面张力很小,铺展性能和低泡效果均较好,0.1%聚醚酯改性三硅氧烷的表面张力为20.81 mN/m,铺展直径为43.0 mm,发泡力为1.13,5 min稳泡性为0.20。产品结构经红外光谱表征。  相似文献   

8.
毛桃嫣  郑成  林璟  陈晓玲 《精细化工》2013,(12):1370-1373,1393
利用无溶剂加热方法,以N,N-二甲基乙醇胺(DMEA)和1,1,1,3,5,5,5-七甲基三硅氧烷(MDHM)为原料,合成了(Me3SiO)2Si(Me)(OC2H4)NMe2。考察了反应时间、反应温度、反应物摩尔比、催化剂浓度等因素对反应收率的影响。通过正交实验分析法得出最佳合成条件为:MDHM和DMEA的摩尔比为1.5∶1,反应时间为25min,反应温度为100℃,催化剂用量(占反应体系总质量的百分数,下同)为0.000 8%,在该条件下,最高收率为75.6%。利用减压蒸馏分离提纯和气相色谱技术确定提纯后产物纯度,并且经过质谱分析和核磁共振波谱鉴定产物的结构。  相似文献   

9.
以八甲基环四硅氧烷(D4)、六甲基二硅氧烷(MM)为原料,强酸性阳离子交换树脂为催化剂,通过平衡反应合成了二甲基硅油。通过单因素试验法考察了反应温度、反应时间、阳离子交换树脂的氢离子含量、粒径及用量对二甲基硅油黏度的影响,并考察了阳离子交换树脂催化剂的连续使用寿命。结果表明,适宜作合成甲基硅油催化剂的强酸性阳离子交换树脂的氢离子质量摩尔浓度为5 mmol/g、粒径为0.6~0.8 mm,最佳添加量为反应物质量的6%,反应时间为5 h,反应温度为80~90℃,阳离子交换树脂的连续使用寿命为200 h左右。  相似文献   

10.
以二甲基环硅氧烷混合物(DMC)和六甲基二硅氧烷(MM)为原料,以阳离子交换树脂HND-34为催化剂,在80℃的条件下反应合成了药用二甲基硅油,研究了MM用量、反应时间、脱低时间、脱低温度、吸附时间对二甲基硅油性能的影响。结果表明,当反应时间为4 h,反应温度为80℃,脱低时间为2 h,脱低温度为200℃,原料吸附除杂时间为45 min时,通过调节MM用量,可以合成不同黏度的药用级二甲基硅油。  相似文献   

11.
以磺化硅胶为催化剂,以柠檬酸和正丁醇为原料合成柠檬酸三丁酯。 考察了磺化硅胶催化剂用量、原料配比和回流时间对反应的影响。最佳工艺条件:催化剂用量为柠檬酸质量的1.30%,n(柠檬酸)∶n(正丁醇)=1∶3.2,回流时间3 h,反应温度(135~140) ℃,柠檬酸三丁酯的酯化率为98.7%。该催化剂制备简单,催化活性好,后处理简便。  相似文献   

12.
以氧化亚锡为催化剂,由三羟甲基丙烷和棕榈仁油酸合成了三羟甲基丙烷棕榈仁油酸酯。考察了催化剂用量、反应温度、物料配比以及反应时间等对酯化率的影响。得到优化合成工艺条件为:n(棕榈仁油酸):n(三羟甲基丙烷)=2.80:1,催化剂用量为0.050%,反应温度控制在205~210℃,回流反应5.0h。在此条件下,酯化率可达97%。  相似文献   

13.
以1,6~己二醇、丙烯酸为原料,对甲苯磺酸与亚硫酸为催化剂,环己烷为带水剂,CuSO4/NaHSO4为复合阻聚剂,采用直接酯化法合成1,6-己二醇二丙烯酸酯。探讨了催化剂、带水剂、反应时间和温度以及酸醇比(丙烯酸/1,6-己二醇,摩尔比)对酯化反应的影响。研究结果表明,最佳的酯化反应条件为:丙烯酸/1,6-己二醇为2.5,催化剂用量(占原料总质量,%)为1.5%,带水剂用量(占原料总质量,%)为65%,反应时间为90min,反应温度为80—90℃。在此条件下,产物为无色透明油状液体,收率可达93.25%。  相似文献   

14.
以甲基丙烯醛和无水醋酐为原料及强酸性阳离子交换树脂为催化剂合成了2.甲基烯丙基二乙酸酯,考察了催化剂用量、物料配比、反应温度及反应时间对反应的影响。确定了适宜的反应工艺条件:n(醋酐)/n(甲基丙烯醛)为1,2;强酸性阳离子交换树脂用量以甲基丙烯醛的用量(mol)为基准,2.0g/mol;反应时间5h,反应温度-10℃。在此条件下,甲基丙烯醛转化率为95.5%,2.甲基烯丙基二乙酸酯选择性和收率分别为95.7%和91.4%。并对产物进行了红外光谱表征,产物的红外谱图和标准谱图基本吻合。  相似文献   

15.
以甲缩醛为原料合成聚缩醛二甲醚,考察了催化剂、反应温度、物料配比、反应时『司、搅拌转速等因素对反应的影响。结果表明:以树脂为催化剂,催化剂用量5、vt%左右,甲醛和甲缩醛的摩尔比为1.0~1.5:1,反应温度96~105℃,搅拌转速为600~800r/min,通入的N2初始压力0.8~1.0MPa。在此条件下反应4~6h,反应转化率达到65%左右,选择性为90%左右。  相似文献   

16.
王奇伟  高明 《浙江化工》2014,(11):22-25
合成了1-甲基咪唑醋酸([Mim]Ac)质子型离子液体,对其进行了1H NMR和IR表征。以[Mim]Ac为催化剂,甲醛、丙醛、二乙胺为原料,通过Mannich反应制备了甲基丙烯醛。考察了原料投料比、[Mim]Ac用量、Mannich反应温度和反应时间等因素对甲基丙烯醛收率的影响。研究结果表明,当甲醛、丙醛和二乙胺的摩尔比为1.1:1.0:1.0,[Mim]Ac用量(物质的量)为丙醛的10.0%,Mannich反应温度为45℃,反应时间为50 min,分解反应温度为75℃,甲基丙烯醛的收率为95.3%,并对产物进行了1H NMR表征。同时,对[Mim]Ac质子型离子液体催化Mannich反应的机理进行了初步研究。  相似文献   

17.
利用共沉淀和低温陈化法制备S2O82-/ZrO2-TiO2 固体超强酸作为合成硬脂酸正丁酯的催化剂。通过XRD、FT-IR和SEM对催化剂进行表征, 考察n(Zr)∶n(Ti)、焙烧温度、浸渍液浓度和浸渍时间对催化剂催化活性的影响,以酯化合成硬脂酸正丁酯实验为探针,同时考察反应温度和n(硬脂酸)∶n(正丁醇)对酯化率的影响。结果表明,在n(Zr)∶n(Ti)=2∶2、浸渍液(NH4)2 S2O8浓度0.5 mol·L-1、浸渍时间6 h、焙烧温度500 ℃、n(硬脂酸)∶n(正丁醇)=1∶3、催化剂用量0.2 g、反应温度120 ℃和反应时间3 h条件下,酯化率可达98.69%。  相似文献   

18.
在超临界条件下用卤素交换氟化的方法制备对氟苯甲醛,研究了助溶剂种类、反应时间、原料物质的量比、反应温度、反应压力等对对氟苯甲醛收率的影响。结果表明:在超临界二氧化碳(scCO2)介质中,以对氯苯甲醛(PCAD)和四丁基氟化铵(TBAF)为原料、以甲醇为助溶剂、以四苯基溴化膦(Ph4PBr)为相转移催化剂,在反应时间为4h、n(TBAF)∶n(PCAD)∶n(Ph4PBr)=1.5∶1∶0.1、反应温度为120℃、反应压力为9.0MPa的优化条件下,对氟苯甲醛的收率达到48.1%。  相似文献   

19.
庄志军  丁元生 《弹性体》2012,22(6):28-31
以钨酸钠、硼酸为原料合成母体酸,以六氢吡啶为有机配体合成了有机/无机杂化电荷转移配合物[(CH2)5NH2]5BW12O40。通过红外光谱、X-射线衍射和热重分析袁征,确认所合成的化合物中多酸阴离子仍保留Keggin结构。将新合成的[(CH2)5NH2]5BW12O40杂多酸哌啶盐应用到苯甲醛氧化合成苯甲酸反应中,考察了催化剂用量、氧化责4H2O2(质量分数为30%)的用量、反应温度、反应时间等对苯甲酸收率的影响。确定最佳工艺条件为:n(催化剂):n(苯甲醛)=1.880×10-3:1;n(H2O2):n(苯甲醛)=4.760:1;反应温度80℃;反应时间4h,此条件下苯甲酸的收率可达到80%。  相似文献   

20.
制备了离子液体[EMIm]Br-FeCl_3,并用于催化1-丁烯齐聚反应,考察了不同反应条件对其催化性能的影响,即对1-丁烯齐聚产物的组分及分布的影响。结果表明,1-丁烯齐聚产物随离子液体的构成和反应条件的变化而变化,其中[EMIm]Br与FeCl_3的物质的量比对产物选择性的影响较为显著。常压下,FeCl_3与[EMIm]Br物质的量比小、温度低和反应时间短有利于提高二聚物的选择性,六聚物减少。在离子液体{n(FeCl_3):n[EMIm]Br=1:1}用量0.01 mol、0.1 MPa时,升高温度和延长时间均会使三聚物、四聚物和五聚物的选择性增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号