首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Food Hydrocolloids》2006,20(2-3):261-268
The inherent thermodynamic instability of water–oil–water (W/O/W) emulsions has restrictions for their application in food systems. The objective of this study was to develop a food grade W/O/W emulsions with high yield and stability using minimal concentrations of surfactants. Emulsions were prepared using soybean oil, polyglycerol ester of polyricinoleic acid (PGPR) alone or in combination with sodium caseinate (NaCN) as emulsifier(s) for primary water-in-oil (W/O) emulsions and NaCN as the sole emulsifier for secondary W/O/W emulsions. Increasing the concentration of PGPR (0.5–8%w/v) had no effect on the droplet sizes of the resulting W/O/W emulsions. However, significant increases in droplet sizes of W/O/W emulsions were observed when the concentration of NaCN in external phase was reduced from 0.5 to 0.03% (w/v) (p<0.05). Percentage yields of emulsions (using a water-soluble dye) improved when PGPR concentration in the inner phase was increased from 0.5 to 8% (w/v). A stable W/O/W emulsion with a yield >90% could be prepared with 4% (w/v) PGPR alone as primary hydrophobic emulsifier and 0.5% (w/v) NaCN as external hydrophilic emulsifier. The concentration of PGPR in the inner phase could be reduced to 2% (w/v) without affecting the yield and stability of the W/O/W emulsion by partially replacing PGPR with 0.5% (w/v) NaCN, which was added to the aqueous phase of the primary W/O emulsion. The results indicate that a possible synergistic effect may exist between PGPR and NaCN, thus allowing formulation of double emulsions with reduced surfactant concentration.  相似文献   

2.
Developing healthy products requires in-depth knowledge of digestion. This study focuses on lipid digestion in relation to emulsion properties typically followed by pH-stat. Although this is a fast and easy method to follow the overall digestion, it provides no details on lipid digestion products. Thus, the aims of the present study were to use gas chromatography (GC) to determine all products present during lipolysis, i.e. monoglycerides (MG), diglycerides (DG) and triglycerides (TG), and to compare this method with the pH-stat method for free fatty acids (FFA). Fine, medium and coarse emulsions stabilized with two different emulsifiers (whey protein isolate (WPI) or gum arabic) were digested under in vitro intestinal conditions. Although the amount of FFA increased for both methods for WPI stabilized emulsions, the amount of FFA was 2-3 times higher when determined by GC compared with pH-stat. GC analysis showed decreasing amounts of MG and DG with increasing droplet size for both emulsions. Molar ratios of FFA/DG and MG/DG were twofold higher for WPI than for gum arabic stabilized emulsions. This indicates that the total production of lipolytic products (i.e. FFA + MG + DG) depends on the droplet size and the emulsifier but their proportions only depend on the emulsifier. Although pH-stat provides a fast measure of FFA release, it is influenced by the emulsifier type at the oil-water interface and therefore care should be taken when interpreting pH-stat results. We suggest combining this method with GC for accurate FFA determination and further evaluation of all lipolytic products.  相似文献   

3.
This study aims to examine the microstructure, rheology and lipolysis of water-in-oil (W/O) emulsions (40 wt.%) prepared with or without (Control) the addition of normal (NAM) and high amylose (HAM) maize starch during simulated digestion in a semi-dynamic gastrointestinal tract (GIT) model. Microstructural examinations showed modification in initial W/O emulsion droplets to multiple W1/O/W2 droplets during in vitro digestion. This is in line with the rheological results, where the shear viscosity and moduli in the oral phase were remarkably reduced after entering the intestinal phase. In comparison to control and NAM emulsions, HAM emulsions showed a more compact and continuous network structure and greater viscosity and elastic modulus throughout GIT digestion. These results support lipolysis, where fewer free fatty acids were released in the HAM emulsion (70%) than in the control (86%) and NAM (78%) emulsions. This work has provided an in-depth understanding of the digestion of W/O emulsions as influenced by amylose content, which is meaningful for the development of low-fat products with reduced lipid digestibility.  相似文献   

4.
The study was conducted to produce ergocalciferol (Vit-D2) loaded oil-in-water (O/W) emulsions utilising the onion skin waste saponins (OSW) as a natural emulsifier and almond oil as carrier oil. The impact of different formulations upon the digestibility of lipids, LCT (long-chain triglycerides) or MCT (medium-chain triglycerides), and bioaccessibility of Vit-D2 was analysed. The mean particle size diameter of almond oil-based O/W emulsions was decreased with increasing homogenisation pressure and emulsifier concentration. During 120 mins of digestion in small intestinal fluids (SIF), almond oil in high-lipid emulsions (5% w/w) was not fully digested, resulting in a lower bioaccessibility of ergocalciferol than low-lipid samples. Almond oil emulsions with larger particle size have a slower rate of lipid digestion than the smaller size particles, but the release rate of free fatty acids was constant throughout the digestion process. Moreover, almond oil emulsions showed similar Vit-D2 bioaccessibility to the oil-based emulsions but were much higher than MCTs.  相似文献   

5.
Semi-solid multiple W/O/W emulsions with low concentrations (0.8, 1.6 and 2.4% w/w) of lipophilic polymeric primary emulsifier PEG-30-dipolyhydroxystearate (PDHS) have been formulated. Both emulsions, primary and multiple, were prepared with high content of inner phase (Phi1 = Phi2 = 0.8). All the formulations differ only in the lipophilic emulsifier concentration. Evaluating several parameters such as macroscopic and microscopic aspect, droplet size, accelerated stability under centrifugation and flow and oscillatory rheological behaviour, assessed the multiple systems. It is possible to formulate the semi-solid W/O/W multiple emulsions with low concentrations of PDHS as the primary emulsifier. It appeared that the highest long-term stable multiple emulsion with the lowest droplet size, the highest apparent viscosity and highest elastic characteristic, was the sample with the highest concentration (2.4% w/w) of the primary emulsifier.  相似文献   

6.
The incorporation of relevant amounts of non-adsorbing hydrocolloids to oil-in-water (O/W) emulsions is a suitable alternative to reduce creaming. The effect of incorporating xanthan gum (XG) or guar gum (GG) in soy soluble polysaccharide (SSPS) stabilized oil-in-water (O/W) emulsions was studied. The emulsions contained 6 wt.% of SSPS, 20 wt.% Perilla seed oil (PSO), an omega-3 vegetable oil, and variable amounts of XG or GG ranging from 0.03 to 0.3 wt.%. The presence of minute amounts of XG or GG in fresh emulsions significantly decreased the emulsion droplet size (EDS) although such low concentrations did not provide enough continuous phase viscosity to arrest creaming. Emulsion microstructure indicated the presence of flocculation even at high concentrations of XG or GG caused by a depletion mechanism. All emulsions with XG or GG exhibited pseudoplastic behavior while the control emulsions showed an almost Newtonian behavior. Emulsion droplet polydispersion generally decreased with increase in the continuous phase viscosity indicating the importance of continuous phase viscosity in the dissipation of shear energy throughout the emulsion during homogenization. The characteristics of the emulsions were closely related to the rheological changes of the continuous phase.  相似文献   

7.
Soy soluble polysaccharides (SSPS) are shown to prevent destabilization of soy protein isolate (SPI) dispersions and SPI-based oil-in-water (O/W) emulsions under acidic conditions. Addition of SSPS above a critical concentration (0.25 wt%) increased the stability of 0.50 wt% SPI dispersions against aggregation and phase separation under conditions where SPI would normally precipitate (near its isoelectric point). Though SSPS neutralized SPI surface charge via electrostatic interaction, there was increased stability against aggregation due to steric repulsion. At acidic pH, addition of 1 wt% NaCl electrostatically screened protein–polysaccharide complexation which led to SPI precipitation and sedimentation. However, the order of salt addition had a significant impact on charge screening, with salt added before pH adjustment reducing SPI–SSPS complexation whereas it had less effect when added afterwards. Salt penetration efficacy diminished with decreasing pH. O/W emulsions (5 wt% oil) prepared with 0.50 wt% SPI destabilized at pH 4–5 due to protein aggregation, but addition of ≥0.25 wt% SSPS improved emulsion stability by inhibiting protein–protein interactions thus limiting increases in oil droplet diameter over time. Overall, both dispersion and emulsion stability greatly depended on pH, ionic strength and SSPS concentration. These results demonstrated that SSPS could effectively stabilize acidic SPI dispersions and that SPI–SSPS interactions may be used as a tool to improve the kinetic stability of SPI-based O/W emulsions.  相似文献   

8.
The destabilisation mechanism of oil-in-water (o/w) emulsions was studied as a function of oil content (20% and 40% o/w), homogenisation conditions and crystallisation temperatures (10, 5, 0, −5 and −10 °C). A mixture of anhydrous milk fat and soya bean oil was used as the lipid phase and whey protein isolate (2 wt%) as emulsifier. Crystallisation and melting behaviours were analysed using differential scanning calorimetry. Physicochemical stability was measured with a vertical scan macroscopic analyser. Emulsions with 20% oil were found to be less stable than those with 40% oil. For 20% o/w emulsions, the crystallisation was delayed and inhibited in emulsions with smaller droplets and promoted in emulsions with larger droplets when compared with 40% o/w emulsions. Depending on the droplet sizes in the emulsion, the formation of lipid crystals (in combination with the emulsifier) either stabilises (small droplets) or destabilises (big droplets) the emulsion.  相似文献   

9.
主要探讨花生油乳化体系中乳化剂类型、用量、pH值、EDTA、温度等对花生油氧化稳定性的影响,结果显示:乳化剂种类和pH对于乳状液体系的氧化稳定性有显著影响,阴离子乳化剂SDS稳定的乳化液,pH4.0的氧化速率最快;非离子乳化剂Tween20稳定的乳化液,pH的影响不是很显著;阳离子乳化剂CTAB稳定的乳化液,随着pH的升高,氧化速率变快。乳化液体系中微量金属离子对于体系也有相当大的影响,随着金属离子螯合剂EDTA浓度的增加,其乳化体系中花生油的氧化速率显著降低。乳化剂用量也会影响体系的氧化稳定性,随着乳化剂用量的增加,乳化乳化体系中花生油的氧化稳定性降低。  相似文献   

10.
用Fenton催化氧化体系模拟氧化,催化剂FeCl3,H2O2,VC的浓度分别为5、5、0.1mmol/L,以脂肪氧化产物丙二醛为指标,考察了马铃薯蛋白和不同乳化剂(非离子乳化剂Tween20、阴离子乳化剂卵磷脂和大分子乳化剂酪蛋白酸钠)共乳化制备得到的乳状液的氧化稳定性,并测定了相应乳状液的乳化稳定性。酪蛋白酸钠和马铃薯水解蛋白作为乳化剂得到的乳状液氧化稳定性较好,而Tween20和马铃薯蛋白水解物作为乳化剂得到的乳状液物理稳定性较高。  相似文献   

11.
Oil‐in‐water (O/W) emulsions with varying concentration of oil phase, medium‐chain triglyceride (MCT), were prepared using phase‐separating gum arabic (GA)/sugar beet pectin (SBP) mixture as an emulsifier. Stability of the emulsions including emulsion phase separation, droplet size change, and oil migration were investigated by means of visual observation, droplet size analysis, oil partition analysis, backscattering of light, and interfacial tension measurement. It was found that in the emulsions prepared with 4.0% GA/1.0% SBP, when the concentration of MCT was greater than 2.0%, emulsion phase separation was not observed and the emulsions were stable with droplet size unchanged during storage. This result proves the emulsification ability of phase‐separating biopolymer mixtures and their potential usage as emulsifiers to prepare O/W emulsion. However, when the concentration of MCT was equal or less than 2.0%, emulsion phase separation occurred after preparation resulting in an upper SBP‐rich phase and a lower GA‐rich phase. The droplet size increased in the upper phase whereas decreased slightly in the lower phase with time, compared to the freshly prepared emulsions. During storage, the oil droplets exhibited a complex migration process: first moving to the SBP‐rich phase, then to the GA‐rich phase and finally gathering at the interface between the two phases. The mechanisms of the emulsion stability and oil migration in the phase‐separated emulsions were discussed.  相似文献   

12.
Iron (Fe3+) was encapsulated within the internal aqueous phase of water-in-oil-in-water (W/O/W) emulsions, and then the impact of this iron on the oxidative stability of fish oil droplets was examined. There was no significant change in lipid droplet diameter in the W/O/W emulsions during 7 days storage, suggesting that the emulsions were stable to lipid droplet flocculation and coalescence, and internal water diffusion/expulsion. The initial iron encapsulation (4 mg/100 g emulsion) within the internal aqueous phase of the water-in-oil (W/O) emulsions was high (>99.75%), although, a small amount leaked out over 7 days storage (≈10 μg/100 g emulsion). When W/O/W emulsions were mixed with fish oil droplets the thiobarbituric acid-reactive substances (TBARS) formed decreased (compared to fish oil droplets alone) by an amount that depended on iron concentration and location, i.e., no added iron < iron in external aqueous phase < iron in internal aqueous phase. These differences were attributed to the impact of W/O droplets on the concentration and location of iron and lipid oxidation reaction products within the system.  相似文献   

13.
Emulsion filled alginate microgel particles can be applied as carrier systems for lipophilic actives in pharmaceutical and food formulations. In this study, the effects of oil concentration, emulsifier type and oil droplet size on the physical stability of emulsions encapsulated in calcium alginate microgel particles (20–80 μm) produced by a continuous impinging aerosol technique were studied. Oil emulsions emulsified by using either sodium caseinate (SCN) or Tween 80 were encapsulated at different oil concentrations (32.55, 66.66 and 76.68% w/w of total solids content). The emulsions were analysed before and after encapsulation for changes in emulsion size distribution during storage, and compared to unencapsulated emulsions. The size distribution of encapsulated fine emulsion (mean size ~ 0.20 μm) shifted to a larger size distribution range during encapsulation possibly due to the contraction effect of the microgel particles. Coarse emulsion droplets (mean size ~ 18 μm) underwent a size reduction during encapsulation due to the shearing effect of the atomizing nozzle. However, no further size changes in the encapsulated emulsion were detected over four weeks. The type of emulsifier used and emulsion concentration did not significantly affect the emulsion stability. The results suggest that the rigid gel matrix is an effective method for stabilising lipid emulsions and can be used as a carrier for functional ingredients.  相似文献   

14.
利用体外模拟胃肠消化系统,考察酪蛋白和乳清蛋白的不同比例和矿物质含量及两者相互作用对1,3-二油酸-2-棕榈酸甘油酯(1,3-dioleoyl-2-palmitoylglycerol,OPO)消化的影响,并对体外消化后的脂肪酸释放率、粒度分布和脂肪酸组成进行测定。结果表明,胃消化阶段,相同乳化剂配比,OPO型乳液脂质生物利用率随CaCl2浓度增加而增加;且在20 mmol/L CaCl2浓度下,不同蛋白质配比(乳清蛋白-酪蛋白),乳液体外消化过程中游离脂肪酸(free fatty acid,FFA)释放率大小顺序为:10∶0>6∶4>0∶10。体外模拟脂质消化前后平均粒径分析结果显示,在不同CaCl2浓度影响下,胃肠消化后乳液平均粒径大于新鲜乳液;随Ca2+浓度增加,新鲜乳液d(0.1)、d(0.5)、d(0.9)值均增加,且在加胃肠消化液后,平均粒径显著增大。在肠消化阶段,3 组乳液在不同CaCl2浓度下,FFA释放速率及程度均随CaCl2浓度增加而增加。胃肠消化后的产物FFA和单甘酯组成分析表明:乳液消化后,FFA和单甘酯主要由棕榈酸和油酸组成。除此之外,本实验还考察了不同钙盐对OPO乳液脂质消化的影响,结果表明溶解度高的钙盐加速脂质水解,有利于脂肪酸的释放即在肠消化阶段FFA释放速率和程度次序为:柠檬酸钙>氯化钙>乳酸钙>碳酸钙。  相似文献   

15.
α-Tocopherol is known to show different activity depending on the concentration and food matrix. Effects of α-tocopherol at the concentrations of 0, 0.1, 0.5, and 1.0 mM were determined in oil-in-water (O/W) emulsions containing anionic, neutral, and cationic emulsifiers under different types of oxidative stress including riboflavin photosensitization, photooxidation, and autoxidation. Headspace oxygen depletion, lipid hydroperoxides, and conjugated dienes were analyzed to determine the oxidative stability of O/W emulsions. α-Tocopherol served as an antioxidant in O/W emulsion with a cationic emulsifier irrespective of oxidative stress. α-Tocopherol acted as an antioxidant in O/W emulsion with a neutral emulsifier at riboflavin photosensitization while a prooxidant at photooxidation. However, in samples with an anionic emulsifier, α-tocopherol activity differed from the concentration and types of oxidative stress. Therefore, cationic transition metals or reactive oxygen species generated from RF photosensitization could play key roles of α-tocopherol in O/W emulsion.  相似文献   

16.
为探讨枯草芽孢杆菌在消化过程中对大豆蛋白-磷脂复合乳液稳定性的影响。本试验设计胃肠消化模型,通过对加菌与不加菌的O/W型和W/O型乳液的乳化活性指数(Emulsifying activity index,EAI)、乳化稳定指数(Emulsification stability index,ESI)、浊度、粒径、Zeta电位检测和显微观察,考察乳液是否出现分离、絮凝、聚集上浮等现象。结果表明,在胃消化阶段,O/W型和W/O型乳液EAI、ESI、粒径、电位都明显减小,显微观察显示液滴密度减小,体积增大;加入枯草芽孢杆菌的乳液与不加菌乳液相比,各指标减小的幅度更大。在小肠消化阶段,O/W型和W/O型乳液EAI和ESI整体呈上升趋势,而粒径和电位则明显下降,另外,两者的显微观察显示液滴密度减小,体积也减小。与不加菌的相比,加入枯草芽孢杆菌后乳液EAI、ESI、粒径显著降低,电位显著升高(P<0.05)。综合上述结果,枯草芽孢杆菌促进了大豆蛋白-磷脂复合乳液在消化过程中的破乳现象。  相似文献   

17.
Heteroaggregated oil‐in‐water (O/W) emulsions formed by targeted combination of oppositely charged emulsion droplets were proposed to be used for the modulation of physical properties of food systems, ideally achieving the formation of a particulate 3‐dimensional network at comparably low‐fat content. In this study, rheological properties of Quillaja saponins (QS), sugar beet pectin (SBP), and whey protein isolate (WPI) stabilized conventional and heteroaggregated O/W emulsions at oil contents of 10% to 60% (w/w) were investigated. Selected systems having an oil content of 30% (w/w) and different particle sizes (d43 ≤ 1.1 or ≥16.7 μm) were additionally subjected to chemical (genipin or glutaraldehyde) and thermal treatments, aiming to increase network stability. Subsequently, their rheological properties and stability were assessed. Yield stresses (τ0) of both conventional and heteroaggregated O/W emulsions were found to depend on emulsifier type, oil content, and initial droplet size. For conventional emulsions, high yield stresses were only observed for SBP‐based emulsions (τ0,SBP approximately 157 Pa). Highest yield stresses of heteroaggregates were observed when using small droplets stabilized by SBP/WPI (approximately 15.4 Pa), being higher than those of QS/WPI (approximately 1.6 Pa). Subsequent treatments led to significant alterations in rheological properties for SBP/WPI systems, with yield stresses increasing 29‐fold (glutaraldehyde) and 2‐fold (thermal treatment) compared to untreated heteroaggregates, thereby surpassing yield stresses of similarly treated conventional SBP emulsions. Genipin‐driven treatments proved to be ineffective. Results should be of interest to food manufacturers wishing to design viscoelastic food emulsion based systems at lower oil droplet contents.  相似文献   

18.
ABSTRACT: In this study we tried to prepare stable water-in-oil-in-water (W/O/W) emulsions using polyglycerol polyricinoleate (PGPR) as a hydrophobic emulsifier and whey protein isolate (WPI) as a hydrophilic emulsifier. At first, water-in-oil (W/O) emulsions was prepared, and then 40 wt% of this W/O emulsion was homogenized with 60 wt% aqueous solution of different WPI contents (2, 4, and 6 wt% WPI) using a high-pressure homogenizer (14 and 22 MPa) to produce W/O/W emulsions. The mean size of final W/O/W droplets ranged from 3.3 to 9.9 μm in diameter depending on the concentrations of PGPR and WPI. It was shown that most of the W/O/W droplets were small (<5 μm) in size but a small population of large oil droplets (d > 20 μm) was also occasionally observed. W/O/W emulsions prepared at the homogenization pressure of 22 MPa had a larger mean droplet size than that prepared at 14 MPa, and showed a microstructure consisting of mainly approximately 6 to 7-μm droplets. When a water-soluble dye PTSA as a model ingredient was loaded in the inner water phase, all W/O/W emulsions showed a high encapsulation efficiency of the dye (>90%) in the inner water phase. Even after 2 wk of storage, >90% of the encapsulated dye still remained in the inner water phase; however, severe droplet aggregation was observed at relatively high PGPR and WPI concentrations.  相似文献   

19.
《Food Hydrocolloids》2006,20(2-3):277-283
Soybean soluble polysaccharide (SSPS) is obtained from the by-product of the production of soy protein. SSPS has been employed as a functional ingredient in numerous food applications. When used to prepare oil-in-water emulsions, SSPS forms thick, stable interfaces in a wide pH range, in both acidic and neutral conditions. SSPS forms stable interfacial layers at relatively low biopolymer concentrations (about 4% (w/w) in 20% (w/w) oil-in-water emulsions), and although rich in galacturonic acid, its functionality does not seem to be affected by varying concentration of cations. This work describes the emulsifying properties of SSPS and its stability under various environmental conditions and the principles that regulate the stabilization behavior of this polysaccharide. SSPS contains a high molecular weight polysaccharide fraction with interfacial properties and a small molecular weight fraction. A polypeptide fraction, with an estimated molecular mass of 50 kDa, is covalently linked to the SSPS backbone chains and acts as an anchor to the oil–water interface. The carbohydrate moieties of the SSPS stabilize the emulsion droplets via steric interactions, forming a thick (ranging between 15 and 30 nm, depending on the SSPS type), hydrated layer on the surface of the oil droplet.  相似文献   

20.
The emulsifying properties of actomyosin (AM) of mantle and fins obtained periodically from frozen-stored squid were investigated. Oil in water (O/W) emulsions and their stability were studied by optical characterisation. Both emulsions showed that the initial backscattering (BS) decreased after 3 months of frozen storage. O/W emulsions formulated with AM of squid mantle showed certain stability during the first 20 min, and presented destabilisation during the remaining analysed time, reaching a 20% of BS, approximately. However, for emulsions formulated with AM of fins, the BS diminution was recorded between 30 and 45 min, indicating a higher stability as a function of time with respect to the mantle. The size distribution of emulsions prepared after short times of storage presented three droplet size populations. With increasing the time of frozen storage, the size distribution changed from trimodal to bimodal: the large population decreased until it disappeared and the population with medium size increased at long time of frozen storage. The emulsions formulated with AM of squid fins presented a similar behaviour than emulsions of mantle. QuickScan profiles allowed discriminating creaming and coalescence processes to both emulsions mainly at short time of frozen storage. The emulsion prepared with AM from squid fins was further flocculated than emulsion of mantle. Actomyosin from fin squid exhibits the best properties as emulsifier agents of O/W emulsions. These results suggest that a short frozen-storage period can favour the emulsifying properties of actomyosin obtained from squid mantle and fins. On the other hand, the structure of flocs would affect positively the stability of emulsions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号