首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
《Ceramics International》2022,48(8):10472-10479
Porous mullite ceramics are widely used in heat insulation owing to their high temperature and corrosion resistant properties. Reducing the thermal conductivity by increasing porosity, while ensuring a high compressive strength, is vital for the synthesis of high-strength and lightweight porous mullite ceramics. In this study, ceramic microspheres are initially prepared from pre-treated high-alumina fly ash by spray drying, and then used to successfully prepare porous mullite ceramics with enhanced compressive strength via a simple direct stacking and sintering approach. The influence of sintering temperature and time on the microstructure and properties of porous mullite ceramics was evaluated, and the corresponding formation mechanism was elucidated. Results show that the porous mullite ceramics, calcined at 1550 °C for 3 h, possess a porosity of 47%, compressive strength of 31.4 MPa, and thermal conductivity of 0.775 W/(m?K) (at 25 °C), similar to mullite ceramics prepared from pure raw materials. The uniform pore size distribution and sintered neck between the microspheres contribute to the high compressive strength of mullite ceramics, while maintaining high porosity.  相似文献   

2.
Quartz and clay are substituted gradually by fly ash using a triaxial ceramic formulation under simulated industrial conditions and the effects of fly ash substitution on the macroscopic properties and microstructures of the sintered ceramics are evaluated systematically. With the substitution of 35 wt% (1250 °C), the ceramic sample exhibited optimal properties, including linear shrinkage of 15.61%, bulk density of 2.39 g cm-3, water absorption of 0.62% and flexural strength of 41.70 MPa, due to the accelerated densification and fly ash-spurred needle-shaped mullite. The microstructure analysis shows that the sintered matrix consists of three types of particles, quartz-, clay- and feldspar-like particles showing sintering behavior with respect to filling the glassy matrix with preserved morphology, precipitating mullite crystals, and fusing with the surrounding glassy matrix, respectively. The strength of the fly ash - containing ceramics is analyzed by the dispersion-strengthening mechanism and porosity and the results indicate that the fly ash particles affect the mechanical strength due to Griffith flaws when the total porosity is less than 25% and pores at higher total porosity. This study provides a viable strategy to recycle industrial fly ash in the production of architectural ceramics.  相似文献   

3.
《Ceramics International》2015,41(4):5648-5655
Lime mud is a kind of waste generated during causticization reaction of an alkali recycling process in paper industry. Lime mud and fly ash were reused as raw materials to fabricate anorthite ceramics through solid state reactions. Both sintering temperature and lime mud content influenced the crystalline phases in the prepared ceramics. Anorthite was the major phase in all samples (samples L36, L40, L50 and L60) and it was prominent in sample L36 (containing 36 wt% lime mud). The results also showed that anorthite ceramic can be synthesized at low sintering temperature (1100 °C). Gehlenite and wollastonite were formed in the samples possessing higher calcium (above 40 wt% lime mud) or at lower sintering temperatures. Bulk density, water absorption and compressive strength were measured. These ceramics were of light weight and had high water absorption. Recycling of lime mud and fly ash as raw materials of anorthite ceramic is a feasible approach to solve the solid wastes.  相似文献   

4.
以粉煤灰和赤泥为原料烧结陶瓷工艺与性能研究   总被引:3,自引:0,他引:3       下载免费PDF全文
本文研究了在1050 ℃至1200 ℃之间温度对以粉煤灰赤泥为原料烧结陶瓷的物相和烧结性能的影响.结果表明:实验用粉煤灰原料的主要矿相组成为石英(SiO_2)和莫来石(3Al_2O_3·2SiO_2),赤泥原料的主要矿相组成有钙铝黄长石(Ca_2Al_2SiO_7)、石英(SiO_2)、钙铁榴石(Ca_3Fe_2+3(SiO_4)_3)和钙钛榴石(Ca_3TiFeSi_3O_(12));以粉煤灰赤泥为原料的5组不同配比试样在1200 ℃时试样气孔率相对降低,体积密度和抗压强度相对程度增大;其中5#试样在经1200 ℃烧结后的气孔率为1.67%,体积密度为2.10 g·cm~(-3),抗压强度为123.23 MPa,达到较好的烧结致密状态,试样主要物相是钙钠长石和莫来石.试样内莫来石的形成及玻璃液相的增加促进烧结并在1200 ℃达到致密烧结状态.  相似文献   

5.
Porous anorthite/mullite whiskers ceramics with high porosity (>91%) and high strength (>0.45 MPa) have been successfully prepared by foam gel-casting method. Effects of extra mullite whiskers on properties including thermal conductivity and compressive strength at different temperatures were investigated and discussed in terms of microstructure observed through SEM and TEM. The results showed that the addition of extra mullite whiskers in certain content could effectively reduce thermal conductivity, improve the compressive strength both at room and high temperature at same time. When the mullite whiskers content was 20 mol%, the porosity was as high as 91.6 ± 0.19%, the thermal conductivity was low to 0.034 ± 0.003 W/(m·K), and the compressive strength at 1000°C was high to 0.64 ± 0.11 MPa three times to the pure one. Small pores, small grains, and more phase interface or grain boundary caused by the addition of extra mullite whiskers were the main factors for low thermal conductivity. Meanwhile, small pores, closely bonded small grains, and the stable three-dimension network formed by mullite whiskers helped to improve strength.  相似文献   

6.
The objective of this study was to prepare highly porous mullite ceramics with relatively large-sized pores and improved compressive strength using a freeze/gel casting route combined with polymer sponge for recycling of coal fly ash into high value-added ceramics. In this work, a tertiary-butyl alcohol /coal fly ash slurry system with an appropriate addition of Al2O3 was used. A reticulated structure with large pore size of 220–300 μm, which formed on burnout of polyurethane was obtained; then, the skeletons consisted mainly of more dense crystalline phases together with a few fine pores (<3 μm). The rod-shaped mullite crystals with an aspect ratio of >3.7 (~4 μm in diameter) seen to have grown within the silicate melts existed. The compressive strength of the sintered porous materials increased in the reverse order of the degree of porosity, i.e. low porosity gave a high compressive strength. The porous materials with an average porosity of 61.6 %, sintered at 1600 °C with 70 wt.% solid loading showed the maximum average compressive strength (~45 MPa).  相似文献   

7.
Porous anorthite/mullite ceramics with both high porosity and high strength have been successfully fabricated by foam-gelcasting and pressureless sintering technology, using α-Al2O3, SiO2, and CaCO3 as starting materials and MnO2 as sintering aids. The porous mullite ceramics prepared in this study had 83.3% porosity and 0.3 W/m·K thermal conductivity, exhibited compressive strength value as high as 6.1 MPa. The samples fabricated with mullite content of 30 mol% possessed 79.4% porosity and 5.9 MPa compressive strength showed thermal conductivity as low as 0.19 W/m·K. With the addition of MnO2, the properties of the prepared materials varied slightly when mullite content changed in a large scale. The results showed that the addition of MnO2 promoted the reaction, affected sintering and grain growth, and contributed to high strength and low-thermal conductivity.  相似文献   

8.
Porous anorthite/mullite whisker ceramics with both high strength and low thermal conductivity have been successfully prepared by combining seed-assisted in situ synthesis and foam-freeze casting techniques. The addition of mullite seed was conducive to a reduction in the sintering shrinkage, pore size, and anorthite grain size. This increased the high aspect ratio of mullite whiskers, which enhanced the strength and diminished the thermal conductivity. Mullite whiskers overlapped to form a stable three-dimensional network structure similar to the bird's nest, which was also beneficial to heighten the mechanical properties of the prepared porous ceramics. Through this method, the prepared materials had a high apparent porosity of 87.7–90.2%, a low bulk density of 0.29–0.36 g/cm3, a high compressive strength of 0.65–3.31 MPa, and low thermal conductivity of 0.067–0.112 W/m·K. The results indicated that the method described here can fabricate porous ceramics with excellent properties for further thermal insulating applications.  相似文献   

9.
Porous mullite ceramics with an open/closed pore structure were prepared by protein foaming method combined with fly ash hollow spheres. Both the open porosity and total porosity of samples were enhanced by increasing the hollow sphere content. Mullite whiskers with a diameter of 0.2–4 μm were grown in-situ in the porous mullite ceramics with an AlF3 catalyst, conforming to a vapor-solid growth mechanism. The pore structure of the porous mullite ceramics was significantly affected by the mullite whiskers which increased the open porosity and total porosity. Moreover, the median pore size was reduced from 65.05 μm to 36.92 μm after the introduction of mullite whiskers. The flexural strength and the thermal conductivity of the samples decreased with increasing total porosity. The porosity dependence of the thermal conductivity was well described by the universal model, providing a reference for the prediction of thermal conductivity of porous ceramics with open/closed pores.  相似文献   

10.
Porous mullite ceramics were fabricated from an industrial grade mullite powder by gelcasting process using fly ash cenospheres (FAC) as a pore‐forming agent. The influence of content of FAC and sintering temperature on the density and strength was evaluated. The microstructure showed that FAC can act as a sintering aid and a pore‐forming agent. When the sintering temperature at 1200°C, porous mullite ceramics with a relatively high porosity (48.1–72.2%), low density (0.84–1.64 g/cm3), low thermal conductivity (0.16–0.22 W/m · K), and high compressive strength (6.21–14.70 MPa) have been obtained.  相似文献   

11.
Excessive sintering shrinkage leads to severe deformation and cracking, affecting the microstructure and properties of porous ceramics. Therefore, reducing sintering shrinkage and achieving near-net-size forming is one of the effective ways to prepare high-performance porous ceramics. Herein, low-shrinkage porous mullite ceramics were prepared by foam-gelcasting using kyanite as raw material and aluminum fluoride (AlF3) as additive, through volume expansion from phase transition and gas generated from the reaction. The effects of AlF3 content on the shrinkage, porosity, compressive strength, and thermal conductivity of mullite-based porous ceramics were investigated. The results showed that with the increase of content, the sintering shrinkage decreased, the porosity increased, and mullite whiskers were produced. Porous mullite ceramics with 30 wt% AlF3 content exhibited a whisker structure with the lowest shrinkage of 3.5%, porosity of 85.2%, compressive strength of 3.06 ± 0.51 MPa, and thermal conductivity of 0.23 W/(m·K) at room temperature. The temperature difference between the front and back sides of the sample reached 710°C under high temperature fire resistance test. The low sintering shrinkage preparation process effectively reduces the subsequent processing cost, which is significant for the preparation of high-performance porous ceramics.  相似文献   

12.
《Ceramics International》2017,43(6):4910-4918
The porous ceramics were prepared by directly sintering of lead-zinc mine tailings and fly ash as the raw materials without any additional sintering and foaming agent. The effects of fly ash addition on the crystalline phases, pore structure, physical–chemical porosities and mechanical strength were investigated. The results showed that the bulk density decreased firstly and then increased while the porosity and water absorption presented the opposite tendency with the increase of fly ash content. Meanwhile, the chemical stability improved and the flexural strength had the same variation tendency of the bulk density. The phase evolution of sample with 60 wt% fly ash addition indicated that anorthite phase was formed at low temperature (1000 °C). The thermal behavior illustrated that the foaming process was initiated by the reaction of internal constituents in the lead-zinc mine tailings. Different pore structures indicated different foaming mechanisms that probably occurred at different temperatures. The porous ceramics with 60 wt% fly ash addition exhibited excellent properties, including bulk density of 0.93 g/cm3, porosity of 65.6%, and flexural strength of 11.9 MPa.  相似文献   

13.
The preparation of refractories with both low thermal conductivity and high strength are continuously pursued in industrial furnaces. In this work, mullite refractories with low thermal conductivity and high strength were developed using fly ash as main raw material, and the influence of the quantity of fly ash and sintering temperature on the structure and properties of mullite refractories were investigated. The results show that mullite refractories with low thermal conductivity and high strength could be prepared by using fly ash in large proportion; the thermal conductivity of the samples decreased with the addition of the fly ash and increased with the increase of sintering temperature; the cold compressive strength and modulus of rupture of samples all are enhanced with the increase of sintering temperature, which is attributed to the formation of more elongated mullite by the reconstruction of fly ash at high temperature. For the mullite refractory using 65.04 wt% fly ash treated at 1600°C, the thermal conductivity was .732W/(m·k) at 1000°C, and the cold compressive strength and modulus of rupture could reach 143.5 ± 5.7 MPa and 47.0 ± 4.1 MPa respectively. It can be considered to use as a prospective work lining in industrial furnaces to meet energy saving requirements.  相似文献   

14.
A novel approach to fabricate porous mullite ceramics with homogeneous pore size and high-strength using green non-toxic and cost-effective poly-γ-glutamic acid (γ-PGA) gelling system was reported for the first time. Effect of γ-PGA addition, additive amount and solid loading on rheological behavior of the slurries, and microstructure and properties of samples were investigated systematically. By optimizing the solid loading of mullite samples, we are able to get the sample with small pores (< 200 µm) dominating (93.3% of the total pores), and compressive strength of the sample reaches up to 26.62 MPa. In addition, the mullite ceramics exhibited high porosity of 75.7% with low thermal conductivity of 0.279 W/(m·K) at room temperature. This study not only provides a green and non-toxic gelling system but also offers porous mullite ceramics with low thermal conductivity and excellent mechanical strength as an energy-saving thermal insulation material.  相似文献   

15.
《Ceramics International》2020,46(6):7550-7558
Anorthite-based ceramics were produced entirely from coal fly ash and steel slag. The effect of the CaO/SiO2 ratio (0.12–0.8) on the phase transitions was examined by adding steel slag to coal fly ash in the range of 10–50 wt%, and a temperature range of 900–1200 °C. The influence of CaO/SiO2 and sintering temperatures on the technological properties were assessed by response surface methodology (RSM) and correlated with the phase changes. The results revealed that anorthite was the main phase for the CaO/SiO2 ratio ranging from 0.12 to 0.56, while at 1200 °C, a ratio of 0.8 involved a high content of gehlenite. RSM showed that the CaO/SiO2 ratio was the main influencing factor on the density, while the variation of apparent porosity and compressive strength were more affected by sintering temperature. The crystallisation of the anorthite phase significantly enhanced the properties of the obtained ceramics, whereas the appearance of gehlenite reduced the mechanical strength. The optimum conditions to fabricate anorthite-based ceramics with suitable properties were found to be a CaO/SiO2 ratio of 0.46 and a temperature of 1188 °C. The optimised anorthite-based ceramic exhibited a low thermal conductivity (0.39 W/m.K) and a dielectric constant of 6.03 at 1 MHz, along with a compressive strength of 41 MPa, which makes this sample a potential candidate for insulator applications.  相似文献   

16.
《Ceramics International》2016,42(5):6080-6087
In this work, anorthite–mullite–corundum porous ceramics were prepared from construction waste and Al2O3 powders by adding AlF3 and MoO3 as mineralizer and crystallization catalyst, respectively. The effects of the sintering temperature and time on open porosity, mechanical properties, pore size distribution, microstructure, and phase composition were characterized in detail. The results showed that the formation of the mullite whiskers and the properties of the anorthite–mullite–corundum porous ceramics depended more on the sintering temperature than the holding time. By co-adding 12 wt% AlF3 and 4 wt% MoO3, mullite whiskers were successfully obtained at sintering temperatures upon 1350 °C for 1 h. Furthermore, the resultant specimens exhibited excellent properties, including open porosity of 66.1±0.7%, biaxial flexural strength of 23.8±0.9 MPa, and average pore size of 1.32 µm (the corresponding cumulative volume percent was 37.29%).  相似文献   

17.
SiC/mullite composite porous ceramics were fabricated from recycled solid red mud (RM) waste. The porous ceramics were formed using a graphite pore forming agent, RM, Al(OH)3 and SiC in the presence of catalysts. The influence of firing temperature and the pore-forming agent content on the mechanical performance, porosity and the microstructure of the porous SiC ceramics were investigated. Optimal preparation condition were determined by some testing. The results indicated that the flexural strength of specimens increased as a function of firing temperature and a reduction in graphite content, which concomitantly decreased porosity. The ceramic prepared under optimal conditions having 15?wt% graphite and sintered at 1350?°C, demonstrated excellent performance. Under optimal preparation conditions the flexural strength and porosity of the ceramic were 49.4?MPa and 31.4%, respectively. Scanning electron microscopy observation result showed that rod-shape mullite grains endowed the samples with high flexural strength and porosity. X-ray diffraction analysis indicated that the main crystallization phases of the porous ceramics were 6H-SiC, mullite, cristobalite and alumina. This work demonstrates that RM can be sucessfully reused as a new raw material for SiC/mullite composite porous ceramics.  相似文献   

18.
Spearhead columnar mullite was synthesized by in-situ reaction with V2O5 as additive. When the content of V2O5 was 7 wt%, the length of the spearhead columnar mullite was the longest with an aspect ratio of about 3.5. Furthermore, columnar self-reinforced mullite porous ceramics were prepared by a foam-gelcasting method, and the effects of V2O5 content on the rheological and gelling properties of mullite slurries as well as the microstructure, physical property and thermal insulation property of the prepared mullite porous ceramics were studied. The results showed that the flexural strength and compressive strength of the porous ceramics with 63% porosity prepared by using 2 wt% V2O5 additive were respectively as high as 13.9 and 41.3 MPa, and the thermal conductivity was about 1.04 W m?1 K?1.  相似文献   

19.
How to improve the strength of fibrous porous ceramics dramatically under the premise of no sacrificing its low density and thermal conductivity has remained a challenge in the high-temperature thermal insulation field. In this paper, a new kind of high-strength mullite fiber-based ceramics composed of interlocked porous mullite fibers was prepared by nanoemulsion electrospinning and dry pressing method. Results show that as to the porous ceramics with the same density (~ 0.8 g/cm3), the three-dimensional skeleton structure composed of porous mullite fibers was much denser than that composed of solid mullite fibers. Therefore, porous mullite fiber-based ceramics exhibited a higher compressive strength (5.53 MPa) than that of solid mullite fiber-based ceramics (3.21 MPa). In addition, porous mullite fiber-based ceramics exhibited a superior high-temperature heat insulation property because the porous structure in fibers could reduce the radiant heat conduction. This work provides new insight into the development of high-temperature thermal insulators.  相似文献   

20.
以粉煤灰为主要原料,添加少量的高岭土及微量的添加剂为辅料,采用泡沫浸渍法制备粉煤灰泡沫陶瓷。采用X射线衍射、场发射扫描电镜研究了泡沫陶瓷的生成相及其分布,以及泡沫陶瓷的形貌:并对泡沫陶瓷的孔隙率、抗压强度等进行了表征。结果显示,泡沫陶瓷的生成相主要为莫来石,通过扫描电镜观察到莫来石为细长的针状,大量存在于孔隙位置。从泡沫陶瓷孔隙率的测试结果可知,随着粉煤灰含量的升高,泡沫陶瓷的平均孔隙率下降,抗压强度升高;同一组分试样,当烧结温度升高时,试样的平均气孔率下降,抗压强度升高到一定值后会下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号