首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 223 毫秒
1.
该研究制备高电导、高透明的磷掺杂氢化纳米晶硅氧(nc-Si Ox:H)薄膜,应用于晶硅异质结(SHJ)太阳电池的窗口层以替代传统的氢化非晶硅(a-Si:H)薄膜。与以a-Si:H薄膜为窗口层的电池相比,短路电流密度提高0.5 m A/cm2,达到38.5 m A/cm2,填充因子为82.7%,光电转换效率为23.5%。实验发现,在nc-Si Ox:H薄膜沉积前对本征非晶硅层表面进行处理,沉积1 nm纳米晶硅(nc-Si:H)种子层,可改善nc-Si Ox:H薄膜的晶化率,降低薄膜中的非晶相含量。与单层nc-Si Ox:H窗口层的电池相比,nc-Si:H/nc-Si Ox:H叠层结构提高电池填充因子,达到83.4%,光电转换效率增加了0.3%,达到23.8%。  相似文献   

2.
适用于太阳电池的nc-Si:H薄膜及 nc-Si/c-Si异质结的研究   总被引:1,自引:0,他引:1  
该文介绍了使用改进的PECVD薄膜沉积设备,制备出掺杂氢化纳米硅(nc-SiH)薄膜,并在此基础上制备了纳米硅/晶体硅(nc-Si/c-Si)异质结;研究了其光学和电学特性.实验表明nc-Si/c-Si异质结具有良好的光电转换性能和稳定性,适用于制造太阳电池.  相似文献   

3.
系统地研究产业化甚高频等离子体增强化学气相沉积法制备p型a-SiO_x∶H薄膜的工艺,并将p型a-SiO_x∶H作为a-Si∶H单结电池的窗口层,研究其对电池初始和稳定性能的影响。研究表明CO_2与SiH_4流量比(r(CO_2/SiH_4))、射频功率对a-SiO_x∶H薄膜的光电性能影响最大,r_((CO_2/SiH_4))=1.5和功率=444 W时制备的p型a-SiO_x∶H薄膜材料性能最优。相对于a-SiC_x∶H的p型窗口层,采用优化的p型a-SiO_x∶H薄膜作为窗口层的a-Si∶H单结电池具有相同的初始发电功率,但具有更好的稳定性能,降低了光致衰减。电池的光致衰减率相对降低11.2%,功率输出的稳定性相对提升2%。  相似文献   

4.
该文报道了通过适当氢稀释(RH=15)和合适的衬底温度(Ts=170℃)下,用PECVD制备得到的宽带隙氢化纳米非晶硅(na-Si:H)薄膜,并将其用作pin太阳电池的本征层。经过电池结构和工艺条件的优化设计,在p/i,i/n界面插入渐变带隙缓冲层,制备出了glass/ITO/p—a-SiC:H/i—na-Si:H/n—nc-Si:H/Al结构的pin太阳电池。电池初始开路电压(Voc)高达0.94V,同时还能保证0.72的填充因子(FF)。光电转换效率(Eff)达到8.35%(AM1.5,100mW/cm^2)。  相似文献   

5.
分析影响p+(nc-Si)/i(a-Si)/n(c-Si)异质结太阳电池性能的主要因素,获得纳米硅薄膜杂质浓度、本征层厚度以及背场对电池性能的影响规律。结果表明,当纳米硅薄膜中掺杂浓度增大时,该层大部分区域电场强度变大,短路电流和开路电压增大,有利于提高电池转换效率。优化的掺杂浓度应大于1×1018cm-3。当i层厚度大于30 nm时,电池转换效率η和电池填充因子FF急剧下降,优化的最佳厚度为10 nm。研究加入非晶硅背场提高电池效率的新途径,当引入厚10 nm的a-Si∶H(n+)背面场后,电池转换效率由21.677%提高到24.163%。  相似文献   

6.
考虑到氢氟酸溶液对晶体硅表面具有去氧化和氢离子钝化表面悬键的双重作用,通过优化清洗工艺使得a-Si∶H(i)/c-Si/a-Si∶H(i)异质结构有效少子寿命达到2 ms。研究不同沉积温度对p型非晶硅薄膜电导率的影响,结合后退火发现中温(150℃)生长高温后退火的方式优于直接高温(200℃)沉积,电导率和钝化效果都有明显改善。采用优化后的p层,a-Si∶H(p~+)/a-Si∶H(i)/c-Si/a-Si∶H(i)/a-Si∶H(n~+)(inip)结构少子寿命可达3.70 ms。制备的HIT电池具有优良的性能:开路电压V_(oc)=700 mV,潜在的填充因子pFF=82%,短路电流密度Jsc=32.10 mA/m~2,填充因子FF=72.35%,转换效率η=16.26%,对比Suns-V_(oc)I-V曲线和标准条件下测试的I-V曲线计算得串联电阻,分析FF与pFF差异的原因。  相似文献   

7.
室温下电子束蒸发沉积氧化钼(MoO_x)薄膜呈非晶态,光学带隙约为3.6 eV,与单晶硅表面构成MoO_x/c-Si异质结并具有钝化作用,但明显低于i∶α-Si∶H钝化。ITO/MoO_x/i∶α-Si∶H/n∶c-Si/i∶α-Si∶H/n+∶α-Si∶H/Al太阳电池结构,既有晶硅前后表面钝化,又增加了背电场层,适当的MoO_x厚度可获得电池的最高效率(15.5%);若取消晶硅表面i∶a-Si∶H钝化,与HIT(heterojunction with intrinsic thinlayer)电池类似,硅的前表面复合增大,电池效率降为11.5%;若取消背表面i∶a-Si∶H钝化及背电场材料n~+∶a-Si∶H,电池效率急剧下降到8.3%,这表明背表面钝化及背电场,对MoO_x/c-Si异质结太阳电池特性具有更为重要的作用,对高效器件制备具有一定指导意义。  相似文献   

8.
俞凤至  胡安红  郁操 《太阳能学报》2016,37(8):1918-1924
系统研究两种不同形态的硅氧合金薄膜,用甚高频PECVD系统制备的非晶硅氧和纳米硅氧薄膜的特性,以及其在纳米硅薄膜叠层薄膜太阳电池中的应用。实验中主要通过对不同的气体流量比的优化、沉积功率和沉积压力的优化,分别制备出光学带隙约为2.1 e V,折射率约为3的a-SiO_x∶B∶H薄膜,作为非晶硅顶电池的p1层,以及带隙为2.2~2.5 e V,折射率为2.0~2.5,晶化率为20%~50%的nc-SiO_x∶P∶H薄膜,作为非晶硅/纳米硅叠层电池的中间反射层和纳米硅的底电池n2层。最后将优化后的a-SiO_x∶B∶H和nc-SiO_x∶P∶H薄膜应用到非晶硅/纳米硅薄膜叠层电池中,在0.79 m~2的玻璃基板上制备出初始峰值功率为101.1 W、全面积初始转换效率为12.8%、稳定峰值功率为87.3 W、全面积稳定转换效率为11.1%的非晶硅/纳米硅叠层电池。  相似文献   

9.
通过AFORS-HET软件模拟了TCO/a-Si:H(p)/a-Si:H(i)/c-Si(n)/a-Si:H(i)/a-Si:H(n)/Ag结构的硅异质结电池中硅衬底电阻率、本征非晶硅薄膜厚度、发射极材料特性以及TCO功函数对电池性能的影响。结果表明:在其它参数不变的条件下,硅衬底电阻率越低,转换效率越高;发射极非晶硅薄膜厚度对短路电流有较大影响,发射极掺杂浓度低于7.0×1019cm-3时,电池各项性能参数都极差;TCO薄膜功函数应大于5.2 eV,以保证载流子的输运收集。  相似文献   

10.
尝试将SiNx∶H/A1复合膜层应用到晶体硅太阳电池的背部结构上.首先利用PECVD在硅片背面沉积一层SiNx∶H薄膜,然后在SiNx∶H薄膜上丝网印刷Al层,构成SiNx∶H/A1复合膜层.研究了具有SiNx∶H/Al复合膜层结构的硅片的光学内背反射性能,测得其内背反射率达88.9%.并从理论上设计出基于SiNx∶H/A1复合膜层的背点接触太阳电池最优结构,并从实验上制备出这种背点接触太阳电池,初期效率达12.36%.最后,提出了背点接触太阳电池工艺的改进方案.  相似文献   

11.
Woody biomass in Finland and Sweden comprises mainly four wood species: spruce, pine, birch and aspen. To study the ash, which may cause problems for the combustion device, one tree of each species were cut down and prepared for comparisons with fuel samples. Well-defined samples of wood, bark and foliage were analyzed on 11 ash-forming elements: Si, Al, Fe, Ca, Mg, Mn, Na, K, P, S and Cl. The ash content in the wood tissues (0.2–0.7%) was low compared to the ash content in the bark tissues (1.9–6.4%) and the foliage (2.4–7.7%). The woods’ content of ash-forming elements was consequently low; the highest contents were of Ca (410–1340 ppm) and K (200–1310), followed by Mg (70–290), Mn (15–240) and P (0–350). Present in the wood was also Si (50–190), S (50–200) and Cl (30–110). The bark tissues showed much higher element contents; Ca (4800–19,100 ppm) and K (1600–6400) were the dominating elements, followed by Mg (210–2400), P (210–1200), Mn (110–1100) and S (310–750), but the Cl contents (40–330) were only moderately higher in the bark than in the wood. The young foliage (shoots and deciduous leaves) had the highest K (7100–25,000 ppm), P (1600–5300) and S (1100–2600) contents of all tissues, while the shoots of spruce had the highest Cl contents (820–1360) and its needles the highest Si content (5000–11,300). This paper presented a new approach in fuel characterization: the method excludes the presence of impurities, and focus on different categories of plant tissues. This made it possible to discuss the contents of ash element in a wide spectrum of fuel-types, which are of large importance for the energy production in Finland and Sweden.  相似文献   

12.
正1 ABSTRACT To reduce the effect of global warming on our climate,the levels of CO2emissions should be reduced.One way to do this is to increase the efficiency of electricity production from fossil fuels.This will in turn reduce the amount of CO2emissions for a given power output.Using US practice for efficiency calculations,then a move from a typical US plant running at 37%efficiency to a 760℃/38.5 MPa(1 400/5 580 psi)plant running at 48%efficiency would reduce CO2emissions by 170kg/MW.hr or 25%.  相似文献   

13.
Performance assessment of some ice TES systems   总被引:1,自引:0,他引:1  
In this paper, a performance assessment of four main types of ice storage techniques for space cooling purposes, namely ice slurry systems, ice-on-coil systems (both internal and external melt), and encapsulated ice systems is conducted. A detailed analysis, coupled with a case study based on the literature data, follows. The ice making techniques are compared on the basis of energy and exergy performance criteria including charging, discharging and storage efficiencies, which make up the ice storage and retrieval process. Losses due to heat leakage and irreversibilities from entropy generation are included. A vapor-compression refrigeration cycle with R134a as the working fluid provides the cooling load, while the analysis is performed in both a full storage and partial storage process, with comparisons between these two. In the case of full storage, the energy efficiencies associated with the charging and discharging processes are well over 98% in all cases, while the exergy efficiencies ranged from 46% to 76% for the charging cycle and 18% to 24% for the discharging cycle. For the partial storage systems, all energy and exergy efficiencies were slightly less than that for full storage, due to the increasing effect wall heat leakage has on the decreased storage volume and load. The results show that energy analyses alone do not provide much useful insight into system behavior, since the vast majority of losses in all processes are a result of entropy generation which results from system irreversibilities.  相似文献   

14.
The purpose of this paper is to illustrate the advantages of the direct surface-curvature distribution blade-design method, originally proposed by Korakianitis, for the leading-edge design of turbine blades, and by extension for other types of airfoil shapes. The leading edge shape is critical in the blade design process, and it is quite difficult to completely control with inverse, semi-inverse or other direct-design methods. The blade-design method is briefly reviewed, and then the effort is concentrated on smoothly blending the leading edge shape (circle or ellipse, etc.) with the main part of the blade surface, in a manner that avoids leading-edge flow-disturbance and flow-separation regions. Specifically in the leading edge region we return to the second-order (parabolic) construction line coupled with a revised smoothing equation between the leading-edge shape and the main part of the blade. The Hodson–Dominy blade has been used as an example to show the ability of this blade-design method to remove leading-edge separation bubbles in gas turbine blades and other airfoil shapes that have very sharp changes in curvature near the leading edge. An additional gas turbine blade example has been used to illustrate the ability of this method to design leading edge shapes that avoid leading-edge separation bubbles at off-design conditions. This gas turbine blade example has inlet flow angle 0°, outlet flow angle −64.3°, and tangential lift coefficient 1.045, in a region of parameters where the leading edge shape is critical for the overall blade performance. Computed results at incidences of −10°,   −5°,   +5°,   +10° are used to illustrate the complete removal of leading edge flow-disturbance regions, thus minimizing the possibility of leading-edge separation bubbles, while concurrently minimizing the stagnation pressure drop from inlet to outlet. These results using two difficult example cases of leading edge geometries illustrate the superiority and utility of this blade-design method when compared with other direct or inverse blade-design methods.  相似文献   

15.
Chlamydomonas reinhardtii cc124 and Azotobacter chroococcum bacteria were co-cultured with a series of volume ratios and under a variety of light densities to determine the optimal culture conditions and to investigate the mechanism by which co-cultivation improves H2 yield. The results demonstrated that the optimal culture conditions for the highest H2 production of the combined system were a 1:40 vol ratio of bacterial cultures to algal cultures under 200 μE m?2 s?1. Under these conditions, the maximal H2 yield was 255 μmol mg?1 Chl, which was approximately 15.9-fold of the control. The reasons for the improvement in H2 yield included decreased O2 content, enhanced algal growth, and increased H2ase activity and starch content of the combined system.  相似文献   

16.
Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NOx) emissions, while producing lower emissions of carbon dioxide (CO2), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NOx emissions. High NOx emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas-hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NOx and CO2 emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is insufficient penetration and distribution of the pilot fuel in the charge, resulting in a lack of ignition centers. EGR admission at low and intermediate loads increases combustion temperatures, lowering unburned HC and CO emissions. Larger pilot fuel quantities at these load levels and hydrogen gas addition can also help increase combustion efficiency. Power output is lower at certain conditions than diesel-fueled engines, for reasons similar to those affecting power output of SI engines. In both cases the power output can be maintained with direct injection. Overall, natural gas can be used in both engine types; however further refinement and optimization of engines and fuel-injection systems is needed.  相似文献   

17.
A chemical reactor for the steam-gasification of carbonaceous particles (e.g. coal, coke) is considered for using concentrated solar radiation as the energy source of high-temperature process heat. A two-phase reactor model that couples radiative, convective, and conductive heat transfer to the chemical kinetics is applied to optimize the reactor geometrical configuration and operational parameters (feedstock's initial particle size, feeding rates, and solar power input) for maximum reaction extent and solar-to-chemical energy conversion efficiency of a 5 kW prototype reactor and its scale-up to 300 kW. For the 300 kW reactor, complete reaction extent is predicted for an initial feedstock particle size up to 35 μm at residence times of less than 10 s and peak temperatures of 1818 K, yielding high-quality syngas with a calorific content that has been solar-upgraded by 19% over that of the petcoke gasified.  相似文献   

18.
The physical aspects of the activation energy, in higher and high temperatures, of the metal creep process were examined. The research results of creep-rupture in a uniaxial stress state and the criterion of creep-rupture in biaxial stress states, at two temperatures, are then presented. For these studies creep-rupture, taking case iron as an example the energy and pseudoenergy activation was determined. For complex stress states the criterion of creep-rupture was taken to be Sdobyrev's, i.e. σred = σ1 β + (1 − β)σi, where: σ1-maximal principal stress, σi-stress intensity, β-material constant (at variable temperature β = β(T)). The methods of assessment of the material ageing grade are given in percentages of ageing of new material in the following mechanical properties: 1) creep strength in uniaxial stress state, 2) activation energy in uniaxial stress state, 3) criterion creep strength in complex stress states, 4) activation pseudoenergy in complex stress states. The methods 1) and 3) are the relatively simplest because they result from experimental investigations only at nominal temperature of the structure work, however, for methods 2) and 4) it is necessary to perform the experimental investigations at least at two temperatures.  相似文献   

19.
Hydrogen was produced from primary sewage biosolids via mesophilic anaerobic fermentation in a continuously fed bioreactor. Prior to fermentation the sewage biosolids were heated to 70 °C for 1 h to inactivate methanogens and during fermentation a cellulose degrading enzyme was added to improve substrate availability. Hydraulic retention times (HRT) of 18, 24, 36 and 48 h were evaluated for the duration of hydrogen production. Without sparging a hydraulic retention time of 24 h resulted in the longest period of hydrogen production (3 days), during which a hydrogen yield of 21.9 L H2 kg−1 VS added to the bioreactor was achieved. Methods of preventing the decline of hydrogen production during continuous fermentation were evaluated. Of the techniques evaluated using nitrogen gas to sparge the bioreactor contents proved to be more effective than flushing just the headspace of the bioreactor. Sparging at 0.06 L L min−1 successfully prevented a decline in hydrogen production and resulted in a yield of 27.0  L H2 kg−1 VS added, over a period of greater than 12 days or 12 HRT. The use of sparging also delayed the build up of acetic acid in the bioreactor, suggesting that it serves to inhibit homoacetogenesis and thus maintain hydrogen production.  相似文献   

20.
汽轮机数字电液调节系统挂闸异常的技术完善   总被引:1,自引:0,他引:1  
分析了200MW汽轮机数字电液调节系统在运行中存在的挂闸异常问题,采取了相应的技术处理措施,且运行实践效果良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号