首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用N,N-二甲基乙酰胺(DMAC)、N-甲基吡咯烷酮(NMP)和γ-丁内酯萃取分离苯-环己烷-环己烯近沸程物系,考察了3种单一溶剂的分离性能,数据表明DMAC性能相对更优。在此基础上,研究了以DMAC为基础溶剂,NMP和γ-丁内酯为助溶剂的二元混合溶剂对苯-环己烷-环己烯物系的分离性能,结果表明:混合溶剂提高了从环己烷-环己烯中萃取分离苯的能力,但增大了从环己烷中分离环己烯的难度。当NMP和γ-丁内酯在二元混合溶剂中的质量分数分别为10%和25%时,其分离性能优于单一溶剂,整体分离效果也达到最优。  相似文献   

2.
王刚  范炎生 《中国化工贸易》2013,(8):278-278,231
本文介绍了离子液体的特性,并通过国外某文献中气液相平衡数据,分析了离子液体作为萃取剂分离苯、环己烷和环己烯的可行性,并得出了采用离子液体作为萃取剂分离苯、环己烷和环己烯的优缺点。  相似文献   

3.
我公司30万t/a环己醇装置采用苯部分加氢水合法制环己醇,通过在40%苯转化率和80%环己烯选择性加氢催化剂作用下,反应生成苯、环己烯、环己烷混合物,再通过萃取精馏实现苯、环己烯、环己烷的分离,实际生产运行过程中因加氢催化剂收率较低,萃取精馏塔分离效果差,参与水合反应的环己烯产出低于设计值,导致环己醇产出达不到年产30万t的设计产能,针对以上存在问题深入研究,采取对萃取精馏塔内件及填料进行技术改造来优化萃取分离效果,提高环己烯的收率,从而加大环己醇产出,满足后续装置的原料消耗。  相似文献   

4.
使用Aspen Plus化工流程模拟软件,以二甲基亚砜为萃取剂,研究了分壁式萃取精馏过程和双塔萃取精馏过程对环己烷-环己烯混合物的分离。结果表明,2种方法均可实现二者的有效分离,其中分壁式萃取精馏过程得到的环己烷和环己烯质量分数分别为99.53%和99.25%。与双塔萃取精馏过程相比,分壁式萃取精馏过程再沸器热负荷降低3.92%,冷凝器热负荷降低15.26%,可以有效节能。  相似文献   

5.
利用化工流程模拟软件Aspen Plus V8.6,以N, N-二甲基乙酰胺为萃取剂对环己烯-环己烷体系进行萃取精馏模拟及优化。通过灵敏度分析工具确定了环己烯萃取精馏塔的最佳工艺操作参数为:全塔采用74块理论板数,萃取剂进料位置在17块理论板,原料进料位置在第40块理论板,回流比为12.8,溶剂比为7.6,此时环己烯分离塔顶环己烯质量分数≤1.5%,萃取剂N, N-二甲基乙酰胺质量分数≤0.002 1%,塔釜环己烯回收率≥99.7%,满足工艺分离要求。对现有生产工艺进行了优化,优化后系统能耗降低了约9.6%。  相似文献   

6.
将环己烷氯化生产氯代环己烷过程中的副产物二氯环己烷转化为重要的化工原料2-环己烯-1-醇和环己烷,并确定了工艺路线:在高温、高压条件下用氢氧化钠水溶液水解二氯环己烷,产物经分离后得到2-环己烯-1-醇、苯、环己烯及环己二烯;苯、环己烯及环己二烯经加氢还原后转化为环己烷。环己烷收率为56.6%,2-环己烯-1-醇收率为34.9%,总收率为91.5%。  相似文献   

7.
介绍了萃取精馏的基本原理,萃取剂选择时要考虑的几个影响因素,在环己醇生产中应用N,N-二甲基乙酰胺作萃取剂,通过萃取精馏将苯加氢反应后的混合物料中的苯、环己烯、环己烷有效分离为纯组分,并对萃取精馏过程中蒸汽温度、塔的操作压力和混合物中水分等因素对系统的影响作了简要分析.  相似文献   

8.
本文基于Aspen Plus软件,对苯-环己烷共沸体系的萃取精馏过程进行模拟与条件优化。采用Sensitivity灵敏度分析考察了多个因素对分离效果与热负荷的影响。确定的最佳工艺方案为:全塔理论板数为30,原料和萃取剂分别在第15块和第3块理论板进料。在此工艺方案下:苯的分离效果达99.863%,萃取剂二甘醇的回收率达99.846%,模拟与优化结果为苯-环己烷共沸物连续萃取精馏分离过程的工业化设计和操作提供了理论依据和设计参考。  相似文献   

9.
间歇萃取精馏分离苯-环己烷   总被引:3,自引:0,他引:3  
利用间歇萃取精馏分离技术,分别以N,N-二甲酰胺(DMF)、二甲基亚砜(DMSO)和二者的混合物作为萃取剂,对苯、环己烷近沸点体系的分离进行了试验研究,考察了操作参数回流比和溶剂流率对分离效果的影响,结果表明:随着回流比和溶剂流率的增加,分离效果增强;三种萃取剂均能对苯和环己烷进行有效的分离,但分离效果不同,其中以DMF∶DMSO=3∶1(质量比)混合物作为萃取剂时效果最好,其次是DMF。试验结果得到的最佳分离条件是:萃取剂为DMF∶DMSO=3∶1混合物,溶剂流率为12.33 mL/min,回流比为4,其产品中环己烷摩尔分数可达86.98%以上,环己烷收率可达83.10%。  相似文献   

10.
使用Ellis汽液平衡釜测定常压下正己烷+苯甲醇,甲基环己烷+苯甲醇和甲基环戊烷+苯甲醇体系的汽液平衡数据,并对实验数据进行了热力学一致性检验,结果表明数据通过检验;此外,利用Wilson方程对实验数据进行关联,关联结果与实验数据吻合较好。基于关联的二元交互作用参数,本文借助流程模拟软件Aspen Plus,以苯甲醇为萃取剂,对正己烷+甲基环己烷和正己烷+甲基环戊烷两个体系进行萃取精馏模拟计算。结果表明,苯甲醇可作为正己烷+甲基环己烷分离的萃取剂,但不适于作为萃取剂分离正己烷+甲基环戊烷共沸体系。  相似文献   

11.
采用模拟软件Aspen Plus,以糠醛为萃取剂,对环己烷-苯共沸物体系的萃取精馏进行了模拟优化。利用灵敏度分析考察了萃取精馏塔的塔板数、萃取剂对原料的质量比(溶剂比)、萃取剂和原料的进料位置等因素对分离效果的影响。确定最优的工艺条件为:全塔理论板数为34,溶剂比为2.4,原料和萃取剂的进料位置分别为第30块板和第12块板。本研究为环己烷-苯萃取精馏过程的设计提供了参考。  相似文献   

12.
选用己二腈-二甲基乙酰胺组成的混合溶剂,对环己烷、环己烯和苯组成的三元体系进行了萃取精馏。实验证明,这一方法可以有效地分离苯部分加氢产物中的各组分。  相似文献   

13.
利用Aspen Plus流程模拟软件,模拟了以苯胺为萃取剂,萃取精馏分离苯-环己烷体系的工艺流程,考察了溶剂比、全塔理论塔板数、原料进料位置、萃取剂进料位置等因素对分离效果的影响。确定了最佳工艺操作参数为:萃取精馏塔的全塔理论板数为32,原料和萃取剂进料位置分别为第25块和第5块理论板,回流比为1.5,溶剂比为2.5。产品环己烷的纯度达到99.66%,苯的纯度达到99.66%,再生的萃取剂苯胺的纯度达到99.99%。  相似文献   

14.
研究了以苯为原料,部分加氢制备环己烯,产物环己烯、环己烷和未反应的苯不经分离,直接与氯化氢加成制备氯代环己烷的合成新工艺路线。该工艺解决了沸点相近的苯、环己烷、环己烯难以分离的问题,氯代环己烷在产物中采用普通精馏分离。考察了进料组成、进料量、进料热状况对氯代环己烷精馏产品质量的影响,结果显示,氯代环己烷产品常压精馏的最佳工艺实验条件为:加热电压200V,全回流70min,变回流比1.5~3.5。  相似文献   

15.
加盐萃取精馏分离苯-环己烷   总被引:1,自引:1,他引:0  
测定不同萃取剂和盐对苯-环己烷共沸物相对挥发度的影响,研究不同质量分数的盐和萃取剂与原料液体积比对苯-环己烷体系相对挥发度的影响以及萃取剂加入速率和回流比对加盐萃取精馏的影响,按实验确定的最佳工艺条件进行重复实验。结果表明:采用N,N-二甲基甲酰胺(DMF)作为萃取剂,加入质量分数为15%的KAc,萃取剂与原料液体积比为0.75,萃取剂加入速率为6 mL/min,回流比为3,可得到纯度大于98%的环己烷。与常规萃取精馏相比,加盐萃取精馏所需萃取剂与原料液体积比小,所得环己烷的纯度较高。塔底釜液经减压精馏,可得质量分数大于99.5%的苯和苯质量分数小于0.15%的加盐萃取剂。  相似文献   

16.
新型填料塔技术在环己烯-环己烷萃取精馏塔中的应用   总被引:2,自引:1,他引:1  
采用新型填料塔技术和新的工艺流程,对原环己烯分离塔系统进行改造,改造后环己烯分离塔塔顶环己烯从6.5%下降到4.0%,环己烯回收塔塔顶环己烷从3.5%—4%下降到2.5%,环己烯纯度从95%提高到97%以上.本次改造提供了一种萃取精馏塔扩能改造的新思路——更改部分工艺,提高提馏段效率。  相似文献   

17.
针对环己醇精馏残液中各组分沸点相近,常规分离方法分离难度大等技术问题,采用催化加氢的方法将环己醇精馏残液中的3-环己基环己烯、1-环己基环己烯和环己亚基环己烷还原为双环己烷,扩大分离组分间的沸点差,经减压精馏分离,得到高纯度的双环己烷和二环己基醚。以Pd/C为催化剂,通过对比实验获得了环己醇精馏残液中的3-环己基环己烯、1-环己基环己烯和环己亚基环己烷催化加氢转化为双环己烷的最佳工艺条件:反应温度120℃、反应压力4 MPa、反应时间4 h、搅拌速度550 r/min、Pd/C催化剂用量为物料质量的0.4%,原料转化率为98.7%,双环己烷的选择性大于99.5%;经减压精馏分离后,双环己烷和二环己基醚的纯度大于99.5%。  相似文献   

18.
加盐萃取-精馏耦合分离苯-环己烷共沸物   总被引:1,自引:0,他引:1  
采用N,N-二甲基甲酰胺(DMF)+硫氰酸钾(KSCN)萃取分离苯-环己烷共沸物,并用常规间歇精馏处理富含苯的萃取液。考察了不同溶剂与原料液的体积比、盐质量分数对该体系分配系数及选择系数的影响,并进行了多级错、逆流萃取实验及精馏实验。实验结果表明:7级错流萃取可得摩尔分数大于97%(脱溶剂摩尔分数)的环己烷;5级逆流可得摩尔分数大于75%(脱溶剂摩尔分数)的环己烷;精馏后的萃取液,苯摩尔分数可达98%以上,DMF+KSCN摩尔分数可达96%以上。加盐萃取-精馏耦合分离苯-环己烷共沸物可得到令人满意的分离效果,是一种绿色节能的新方法。  相似文献   

19.
专利信息     
《化工进展》2013,(3):532+677+691
一种高收率的环己酮生产方法申请公布号:CN102875348A;申请公布日:2013.01.16本发明涉及一种高收率的环己酮生产方法,包括以下步骤:①原料苯加氢制备环己烯;②环己烯、环己烷、苯分离;③环己烷脱氢制备环己烯;④环己烯水合制备环  相似文献   

20.
用催化剂表面修饰以进行苯选择加氢制环己烯的研究   总被引:4,自引:0,他引:4  
1 前言常规的气相苯催化加氢反应,苯环大π键一经打开就全部加氢到底,产物中只能获得环己烷而极难得到选择加氢产物环己烯。生成环己烷的反应从热力学上看远比生成环己烯的反应容易进行很多,并且环己烯也非常容易进一步加氢生成环己烷。但催化剂的表面经修饰剂作用后可根本改变其性能,从而改进催化活性及选择性,或实现常规方法不可能实现的反应,获得不易得到的产物。在经表面修饰的催化剂上进行苯加氢反应可获得选择加氢产物环  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号