首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
攀枝花某低品位钒钛磁铁矿含TiO2为6.21%、TFe为15.34%,矿物嵌布特征较为复杂。试验采用阶段磨矿-阶段弱磁分选铁,两段强磁-全粒级浮选分离钛工艺流程。最终得到TFe品位55.10%、铁回收率40.76%的铁精矿以及TiO2品位46.60%、钛回收率51.09%的钛精矿。工艺流程较好地实现了铁钛分离,精矿指标良好。  相似文献   

2.
为了提高选铁尾矿中钛铁矿的分选指标,对强磁选的钛铁矿粗精矿进行了浮选试验研究。粗精矿含有的主要脉石矿物为黄铁矿、斜长石等,其中TiO2含量为27.40%,试样经脱硫后采用EM351-2与EM351-3混合药剂作为捕收剂时,经过一次粗选,五次精选,可得到品位47.23%,回收率58.29%的钛精矿,并且质量浓度在26~32%范围内试验室指标稳定。现场连续运转26班次后,可得到TiO2平均品位46.51%,平均作业回收率62.37%的稳定指标。  相似文献   

3.
攀西某钒钛磁铁矿选铁尾矿TiO_2含量为8.61%,主要金属矿物为钛铁矿、磁黄铁矿和黄铁矿,主要脉石矿物为普通辉石、橄榄石、普通角闪石和绿泥石。矿石组成复杂,橄榄石含量高。针对选铁尾矿性质,采用强磁-浮选流程选钛,选铁尾矿经过强磁选预选后TiO_2品位由8.61%提升至15.96%,强磁作业回收率77.93%;浮选采用自行研制的调整剂EMZT-01配合硫酸和草酸使用,以EMZB-01作为浮钛捕收剂配合中性油煤油强化捕收,以一粗一扫四次精选的工艺流程获得了较好的试验指标。小型试验获得了TiO_2品位47.78%、浮选作业回收率为61.25%的钛精矿产品,对选铁尾矿TiO_2回收率达到47.73%。  相似文献   

4.
在实验室条件下,对南非某钛铁矿进行初步选矿试验研究,用以初步确定该类型钛铁矿可选性及选矿工艺方法。该类型原矿TFe品位20.46%,TiO_(2)品位10.08%,通过200 mT干式磁选进行分选,获得干式磁选尾矿。随后对该尾矿采用螺旋溜槽-摇床重选-湿式弱磁选工艺进行分选,最终获得TiO_(2)品位为46.4%的钛精矿。为进一步提高钛精矿品位,在实验室条件下采用浮选工艺进行分选试验,在磨矿细度为-0.074 mm含量占比为78%及粗选捕收剂用量400 g·t^(-1)和起泡剂用量100 g·t^(-1)条件下,经过一粗、一精、二扫浮选流程进行选别,最终可获得含TiO_(2)为49.1%的合格钛精矿。通过上述试验研究,该钛铁矿可采用磁-重-浮联合工艺流程,以获取合格品位要求的精矿。  相似文献   

5.
攀枝花某钛铁矿选矿厂尾矿库中尾矿TiO2和TFe品位分别为10.28%和10.38%,采用弱磁选铁-强磁预富集钛-浮选工艺回收其中的铁和钛。弱磁选铁可获得铁品位57.5%、回收率22.19%的铁精矿; 弱磁选铁尾矿经强磁预富集得到TiO2品位15.63%、回收率79.69%的强磁钛粗精矿; 强磁钛粗精矿经一次粗选一次扫选四次精选浮选闭路试验可获得TiO2品位45.97%、对强磁钛粗精矿回收率76.32%、对尾矿库尾矿回收率60.82%的钛精矿。该工艺实现了钛铁矿尾矿二次资源的综合利用。  相似文献   

6.
对某高含碳酸钙钨多金属矿的铜钼铋浮选尾矿进行白钨矿回收试验研究。该浮选尾矿WO3含量为0.43%,碳酸钙含量为44.62%,是白钨矿—方解石型难选白钨矿。研究了以氢氧化钠作矿浆pH调整剂配合抑制剂水玻璃和捕收剂731的常温浮选工艺回收白钨矿,并对白钨粗精矿进行了加温精选—酸浸的试验研究,以提高钨精矿品位。最终确定采用常温浮选—钨粗精矿加温精选—钨精矿酸浸工艺流程,常温浮选闭路试验获得含WO3 4.89%、WO3回收率为84.66%的白钨粗精矿,白钨粗精矿经加温精选—钨精矿酸浸获得含WO3 63.25%、回收率78.84%的合格钨精矿。实现了该高含碳酸钙铜钼铋浮选尾矿中白钨矿的高效回收。  相似文献   

7.
四川攀西某难选钛铁矿重选精矿矿物种类多,金属矿物主要有钛铁矿、钛磁铁矿等,脉石矿物主要为钛辉石、绿泥石等。钛铁矿与脉石矿物嵌布粒度偏细,脉石矿物多含铁元素且易泥化。为实现该重选精矿的高效分选,进行了选矿试验研究。结果表明,通过阶段磨矿-弱磁除铁-浮选富集钛-强磁提质的工艺流程能够获得良好的分选指标。矿样磨细至-0.074 mm占55%,在弱磁选磁场强度为96 kA/m条件下弱磁除铁,弱磁尾矿以硫酸为pH调整剂、羧甲基纤维素钠(CMC)为抑制剂、油酸钠为捕收剂浮选钛铁矿,将浮选粗精矿筛分(-0.038 mm)后,筛上磨细至-0.074 mm占80%,与筛下产品合并脱泥后去除-0.014 mm粒级细泥,沉砂经4次精选,闭路浮选可获得钛精矿TiO2品位42.86%、回收率59.79%的浮选指标;对浮选精矿创新性地进行强磁提质分选工艺,最终获得钛精矿TiO2品位46.77%、回收率54.38%的选别指标。实现了钛资源的有效回收,可以为选厂建设提供技术支持。  相似文献   

8.
陕西某钛铁矿选矿试验   总被引:1,自引:0,他引:1  
针对陕西某低品位原生钛铁矿石性质的特点,采用弱磁选优先选别钛磁铁矿、弱磁选尾矿高梯度磁选预抛尾、预选粗精浮选脱硫、浮选选钛铁矿流程进行了选钛试验研究。最终获得了铁品位为52.46%、TiO2品位为11.35%、铁回收率为27.63%、TiO2回收率为16.41%的攀西式钛磁铁精矿,以及TiO2品位为46.28%、TiO2回收率为45.30%的钛铁精矿。  相似文献   

9.
四川某钒钛磁铁矿选铁尾矿选钛试验研究   总被引:1,自引:0,他引:1  
某钒钛磁铁矿选铁尾矿含TiO213.93%,矿石属于高钛型钒钛磁铁矿,矿石组成复杂,金属矿物主要为钛铁矿、钛磁铁矿,脉石矿物主要为辉石、斜长石和橄榄石。针对该选铁尾矿性质,采用强磁选—浮选联合工艺流程,经强磁抛尾作业后,强磁精矿作为浮选物料经一粗三精三扫作业,最终可获得TiO2品位48.87%、浮选作业回收率85.51%(对选铁尾矿回收率68.97%)的合格钛精矿,选钛技术指标较好,实现了该矿综合回收利用。  相似文献   

10.
王雅静  王伟 《现代矿业》2014,(3):157-158,186,136
对某钒钛磁铁矿选铁尾矿进行单一重选、单一磁选、重磁联合及重浮联合工艺试验,确定了采用重浮联合工艺作为预选抛尾、浮选作为精选作业的工艺条件。重浮流程所得的预选粗精矿经1粗4精2扫的浮选精选,可获得TiO2品位为45.87%、总回收率为69.38%的钛精矿。  相似文献   

11.
阙绍娟 《矿冶工程》2016,36(4):45-48
针对广西某低品位复杂铜锌多金属矿进行了选矿试验研究, 在磨矿细度-74 μm粒级占85%的情况下, 通过一粗三扫四精优先选铜、选铜尾矿一粗两扫三精选锌、选锌尾矿一粗两扫两精选硫砷、硫砷混合精矿一粗两扫两精再分离、中矿顺序返回的闭路试验流程, 获得铜精矿铜品位16.29%、铜回收率51.48%, 锌精矿锌品位45.61%、锌回收率72.15%, 硫精矿硫品位36.35%、砷品位0.67%、硫回收率46.09%, 砷精矿砷品位31.54%、砷回收率75.10%, 综合回收了矿石中的有价元素。  相似文献   

12.
SLon磁选机在攀钢选钛厂扩能改造 细粒级钛铁矿中的应用   总被引:2,自引:0,他引:2  
将SLon磁选机应用于攀钢选钛厂细粒级钛铁矿的扩能改造中, 在给矿TiO2品位为9.47%的条件下, 经一段一粗一扫、两段一精一扫的磁选工艺流程, 可获得TiO2品位22.04%, 回收率74.50%的指标, 尾矿TiO2品位3.07%, 达到了扩能改造的要求。  相似文献   

13.
甘肃某含钪低品位钛铁矿石Fe、TiO2、Sc2O3含量分别为10.20%、4.55%和55.6 g/t,磁性铁仅占总铁的17.90%,钛铁矿形式的铁占总铁的22.02%,硅酸盐形式的铁占总铁的52.05%;钛铁矿形式的钛占总钛的69.01%,钛磁铁矿中钛占总钛量的3.52%,其余的钛主要赋存在难以富集和回收的硅酸盐矿物中。磁铁矿嵌布粒度主要为0.5~0.04 mm,钛铁矿嵌布粒度主要为1~0.07 mm,二者嵌布关系密切,混杂充填在硅酸盐矿物粒间,钪主要以类质同象形式存在于深色钙镁酸盐类矿物(主要为角闪石)中。为了确定该矿石的开发利用工艺,进行了选矿试验研究。结果表明,6~0 mm矿石经重磁拉选矿机预选抛出29.82%的含泥粗粒尾矿后,在阶段磨选情况下(二段磨矿细度为-0.074 mm占81%),采用1粗(135.4 kA/m)2精(119.4 kA/m和119.4 kA/m)弱磁选流程选铁,选铁尾矿采用1粗(0.7 T)1精(0.6 T)高梯度强磁选流程预富集钛,强磁选钛精矿经1粗1扫4精、中矿顺序返回流程选钛,最终获得Fe品位为60.78%、Fe回收率为13.11%的铁精矿,TiO2品位为47.05%、TiO2回收率为55.74%的钛精矿和Sc2O3品位为99.0 g/t、Sc2O3回收率为48.68%钪精矿。  相似文献   

14.
陈晓鸣  严鹏  陈力行 《金属矿山》2014,43(3):132-135
为检验新研制的磁性螺旋溜槽在微细粒钛铁矿回收方面的优越性,以规格型号均为BLL-600的磁性螺旋溜槽和常规螺旋溜槽为分选设备,对0.074~0.038 mm粒级和-0.038 mm粒级的钛铁矿进行了分选效果对比试验。结果表明:①0.074~0.038 mm粒级的物料在给矿浓度均为14%、给矿量均为5.4 L/min的情况下,常规螺旋溜槽1次粗选可获得TiO2品位为27.03%、回收率为72.20%的钛粗精矿,磁性螺旋溜槽1次粗选可获得TiO2品位为27.19%、回收率为86.04%的钛粗精矿;②-0.038 mm粒级的物料在给矿浓度均为10%、给矿量均为4.2 L/min的情况下,常规螺旋溜槽1次粗选可获得TiO2品位为8.48%、回收率为42.83%的钛粗精矿,磁性螺旋溜槽1次粗选可获得TiO2品位为8.43%、回收率为57.88%的钛粗精矿;③在相同工艺技术条件下,磁性螺旋溜槽比同规格型号的常规螺旋溜槽可以取得更高的TiO2回收率;④在精矿TiO2指标相当的情况下,磁性螺旋溜槽可显著提高处理能力。  相似文献   

15.
吴雪红 《金属矿山》2015,44(7):56-59
攀西地区选钛厂对磨矿产品中难处理的-0.038 mm粒级(现场习惯称超细粒级钛铁矿)普遍按矿泥抛弃。为提高资源的利用率,对该地区某选矿厂-0.038 mm占95%、TiO2含量为8.80%、有害元素硫含量为0.62%的脱泥产品进行了选矿试验。结果表明,试样采用1次粗选、中矿再选的悬振锥面选矿机重选流程预富集钛,重选精矿1段浮选脱硫,脱硫产品1粗3精1扫、中矿顺序返回浮选流程选钛,最终获得了TiO2品位为47.01%、回收率为28.58%的钛精矿。可见,悬振锥面选矿机重选-浮选工艺可实现超细粒级钛铁矿的高效回收。  相似文献   

16.
承德某钒钛磁铁矿选铁尾矿中TiO2品位2.60%,TFe品位7.73%。针对该尾矿中钛铁矿资源尚未回收利用的问题现状,根据尾矿性质,本研究采用“磁重联合阶磨阶选”预富集工艺;以及采用硫酸、EM-B作为调整剂,EM-3作为捕收剂,经过一次粗选、一次扫选、五次精选的钛浮选流程,最终获得了TiO2品位46.23%、浮选作业回收率83.25%、相对选铁尾矿回收率42.03%的钛铁矿精矿产品,实现了该尾矿资源化综合回收利用,为此类矿山提供合理可行的资源利用技术方案。   相似文献   

17.
戴新宇  余德文 《金属矿山》2007,37(12):128-130
承钢黑山选钛厂二段强磁尾矿中尚含有一定量的钛铁矿。为减少资源浪费,进行了从该尾矿中回收钛的选矿试验研究。结果表明,采用螺旋溜槽粗选-摇床精选单一重选流程,可得到TiO2品位为32.12%、TiO2回收率为38.02%粗钛精矿,该产品可作为钢铁厂护炉原料销售;采用螺旋溜槽粗选-摇床精选-硫浮选-钛浮选联合流程,可得到TiO2品位在47%左右的合格钛精矿,同时可获得S品位在39%以上的的硫精矿副产品。  相似文献   

18.
吴宁 《矿产综合利用》2022,43(3):126-131
攀西某钒钛磁铁精矿中的TFe、TiO2和S的品位分别为53.75%、12.55%和0.76%,铁、钛主要以钒钛磁铁矿、钛铁矿的形式赋存,硫主要以磁黄铁矿的形式赋存。磁黄铁矿单体解离度低,富连生体多。为将该钒钛磁铁精矿中的硫脱除,采用浮选工艺进行了降硫实验研究。结果表明:采用一粗四精二扫浮选闭路流程,在以硫酸为pH值调整剂,丁黄+丁铵(5∶1)为捕收剂,2#油为起泡剂,粗选用量分别为2000 g/t、300 g/t、40 g/t,粗扫选得到的硫粗精矿再磨细度-38 μm 93.33%的条件下,可以获得S品位为28.65%,S回收率59.46%的硫精矿,TFe品位为53.79%,TFe回收率为98.51%,铁精矿S品位为0.29%的铁精矿。   相似文献   

19.
江苏某坡洪积型钛铁矿石TiO2品位2.63%,钛铁矿嵌布粒度细,矿石矿物组成复杂,黏土含量高。为开发利用该矿石资源,在工艺矿物学性质研究的基础上,首先进行了重选预选工艺和磁选预选工艺对比试验,磁选预选工艺抛除尾矿产率大且TiO2损失率较低。对磁选预选精矿在一段磨矿细度为-0.076 mm占60%、二段磨矿细度为-0.076 mm占90%条件下进行二阶段磨矿-阶段磁选试验,TiO2品位由6.78%提高至14.53%;二段强磁精矿采用螺旋溜槽重选,重选精矿以硫酸为pH调整剂、草酸为抑制剂、水玻璃为分散剂、MOH为捕收剂,经1粗4精1扫闭路浮选,能获得TiO2品位48.26%、回收率13.69%的钛精矿。因此,采用原矿强磁预选-预选精矿二阶段磨矿阶段磁选-磁选精矿螺旋溜槽重选-重选精矿浮选的联合选矿工艺,最终能获得TiO2品位高于48%的合格钛精矿。试验结果可以为坡洪积型钛铁矿石的开发利用提供参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号