首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
对河北承德某钛铁矿进行了选矿试验研究。采用螺旋溜槽粗选、摇床精选,粗钛精矿经浮选脱硫,脱硫尾矿再浮钛的工艺流程,可以获得品位47.09%、产率3.39%、回收率26.26%的钛精矿,同时获得品位40.03%、产率1.08%、回收率57.65%的硫精矿。  相似文献   

2.
针对莫桑比克某重砂矿原矿有价金属矿物品位低、主要金属分布集中和单体解离度高等特点,开展了螺旋溜槽和高频振动细筛粗选工业对比试验研究。分别考察了螺旋溜槽设备类型、给矿浓度和处理能力等因素对粗选螺旋溜槽分选效果的影响,高频振动细筛筛孔尺寸、给矿浓度和处理能力等因素对粗选筛分效果的影响,并进行了二者最优条件的粗选工业对比试验。对比试验结果表明,粗选螺旋溜槽分选指标优于高频振动细筛,螺旋溜槽获得的粗精矿TiO2品位比高频振动细筛粗精矿TiO2品位高20.96%,尾砂抛除率比高频振动细筛高35.07%,且粗选螺旋溜槽设备投资仅占高频振动细筛设备投资的43.48%。该研究成果为莫桑比克某重砂矿资源开发利用粗选工艺选择提供依据和技术支持。  相似文献   

3.
曾茂青 《矿冶》2014,23(5):5-8
云南建水半风化钛铁矿入选品位Ti O25.42%、TFe 12.02%,主要的钛矿物为钛铁矿,主要的铁矿物为钛磁铁矿。对于高梯度强磁粗选抛尾所获得的钛粗精矿,常采用"摇床"传统工艺精选。而本研究则创新性地提出了"螺旋溜槽—强磁"联合精选新工艺,解决了摇床因占地面积大、台数多,难以建较大规模选矿厂的难题。原矿经"粗磨—强磁抛尾—螺旋溜槽精选—钛粗精矿再磨—强磁再精选"新工艺选别后,获得了钛精矿产率4.56%、Ti O241.63%、钛回收率38.23%;铁精矿TFe 54.74%、铁回收率14.80%的较好指标。  相似文献   

4.
某低品位钛铁矿TFe含量为10.20%、TiO2品位为4.55%,属于低铁低钛等级矿石。矿石成分简单,主要工业矿物为钛铁矿和磁铁矿,主要脉石矿物为角闪石、长石。针对该矿石,首先进行了重磁拉抛尾,获得了TFe含量为12.31%,TiO2品位为5.81%的抛尾粗精矿;抛尾粗精矿经磨矿—选铁处理后,采用"螺旋溜槽+干式磁选"工艺,获得了TiO2品位为46.17%的钛精矿产品,回收率为46.72%。实现了矿石中铁、钛矿物的高效回收。  相似文献   

5.
云南低品位钛铁矿选矿工艺研究   总被引:2,自引:0,他引:2  
针对云南某钛铁矿含泥较高、矿物嵌布粒度不均匀的特点,采用螺旋溜槽预选抛尾、摇床精选、摇床中矿再磨再选的工艺流程,可得到TiO2品位为47.41%、回收率为51.47%的钛精矿。  相似文献   

6.
云南文山某细粒钛铁矿选矿试验研究   总被引:2,自引:1,他引:1  
云南文山某钛铁矿原矿含TiO25.96%,以钛铁矿为主,还含有少量的金红石。原矿经磨矿分级控制入选粒度为-0.5 mm,采用水力分级后重选,水力分级粒度为0.038 mm,重选工艺流程为螺旋溜槽粗选、摇床精选,得到品位46.67%,回收率59.01%的钛精矿。该工艺流程简单,投资小、选矿成本低。  相似文献   

7.
SLon-4000磁选机是赣州金环磁选设备有限公司最新研制的最大型号脉动高梯度磁选机,具有处理量大、性能稳定、操作维护方便、能耗低和占地面积小等优点。攀钢某尾矿综合回收选矿厂为解决从攀钢选钛厂尾矿中再回收钛时以螺旋溜槽为粗选设备存在的钛粗精矿回收率低下(仅10%左右)问题,进行了用SLon-4000磁选机代替螺旋溜槽的工业试验。结果表明,在给矿TiO2品位为6.20%的情况下,可获得TiO2品位为13.22%、TiO2回收率为61.88%的钛粗精矿,TiO2回收率比采用螺旋溜槽时提高了50个百分点以上。产品筛析结果显示,该设备对-400目粒级中钛的回收率可达59.51%。  相似文献   

8.
螺旋溜槽回收某细粒级钛铁矿的试验研究   总被引:1,自引:0,他引:1  
针对某矿样钛品位低(TiO2品位10.18%)、物料粒度细、重矿物含量高、脉石具有一定磁性的特点,采用一粗二扫螺旋溜槽重选流程预先富集钛,得到TiO2品位15.63%的重选精矿; 再经一粗三精浮选流程最终获得钛精矿TiO2品位46.35%、作业回收率69.95%、对原矿回收率48.27%。  相似文献   

9.
戴新宇  余德文 《金属矿山》2007,37(12):128-130
承钢黑山选钛厂二段强磁尾矿中尚含有一定量的钛铁矿。为减少资源浪费,进行了从该尾矿中回收钛的选矿试验研究。结果表明,采用螺旋溜槽粗选-摇床精选单一重选流程,可得到TiO2品位为32.12%、TiO2回收率为38.02%粗钛精矿,该产品可作为钢铁厂护炉原料销售;采用螺旋溜槽粗选-摇床精选-硫浮选-钛浮选联合流程,可得到TiO2品位在47%左右的合格钛精矿,同时可获得S品位在39%以上的的硫精矿副产品。  相似文献   

10.
风化钛铁矿可选性试验研究   总被引:2,自引:0,他引:2  
云南某地风化钛铁矿以钛铁矿及钛磁铁矿为主,属风化严重砂矿。从优化选别流程出发,针对矿石性质,采用溜槽粗选抛尾,磁选除铁,摇床富集粗钛精矿及粗钛精矿再磨再选的流程,最终获得了钛精矿品位为47.96%,回收率为72.85%的技术经济指标。  相似文献   

11.
四川攀西某难选钛铁矿重选精矿矿物种类多,金属矿物主要有钛铁矿、钛磁铁矿等,脉石矿物主要为钛辉石、绿泥石等。钛铁矿与脉石矿物嵌布粒度偏细,脉石矿物多含铁元素且易泥化。为实现该重选精矿的高效分选,进行了选矿试验研究。结果表明,通过阶段磨矿-弱磁除铁-浮选富集钛-强磁提质的工艺流程能够获得良好的分选指标。矿样磨细至-0.074 mm占55%,在弱磁选磁场强度为96 kA/m条件下弱磁除铁,弱磁尾矿以硫酸为pH调整剂、羧甲基纤维素钠(CMC)为抑制剂、油酸钠为捕收剂浮选钛铁矿,将浮选粗精矿筛分(-0.038 mm)后,筛上磨细至-0.074 mm占80%,与筛下产品合并脱泥后去除-0.014 mm粒级细泥,沉砂经4次精选,闭路浮选可获得钛精矿TiO2品位42.86%、回收率59.79%的浮选指标;对浮选精矿创新性地进行强磁提质分选工艺,最终获得钛精矿TiO2品位46.77%、回收率54.38%的选别指标。实现了钛资源的有效回收,可以为选厂建设提供技术支持。  相似文献   

12.
甘肃某含钪低品位钛铁矿石Fe、TiO2、Sc2O3含量分别为10.20%、4.55%和55.6 g/t,磁性铁仅占总铁的17.90%,钛铁矿形式的铁占总铁的22.02%,硅酸盐形式的铁占总铁的52.05%;钛铁矿形式的钛占总钛的69.01%,钛磁铁矿中钛占总钛量的3.52%,其余的钛主要赋存在难以富集和回收的硅酸盐矿物中。磁铁矿嵌布粒度主要为0.5~0.04 mm,钛铁矿嵌布粒度主要为1~0.07 mm,二者嵌布关系密切,混杂充填在硅酸盐矿物粒间,钪主要以类质同象形式存在于深色钙镁酸盐类矿物(主要为角闪石)中。为了确定该矿石的开发利用工艺,进行了选矿试验研究。结果表明,6~0 mm矿石经重磁拉选矿机预选抛出29.82%的含泥粗粒尾矿后,在阶段磨选情况下(二段磨矿细度为-0.074 mm占81%),采用1粗(135.4 kA/m)2精(119.4 kA/m和119.4 kA/m)弱磁选流程选铁,选铁尾矿采用1粗(0.7 T)1精(0.6 T)高梯度强磁选流程预富集钛,强磁选钛精矿经1粗1扫4精、中矿顺序返回流程选钛,最终获得Fe品位为60.78%、Fe回收率为13.11%的铁精矿,TiO2品位为47.05%、TiO2回收率为55.74%的钛精矿和Sc2O3品位为99.0 g/t、Sc2O3回收率为48.68%钪精矿。  相似文献   

13.
彭建  张建刚 《金属矿山》2019,48(1):78-82
西藏某浸染状次生硫化铜矿石铜品位为1.86%,原生硫化铜占总铜的15.05%,次生硫化铜占总铜的76.88%,主要铜矿物为斑铜矿、黄铜矿,其他金属矿物有黄铁矿、磁黄铁矿等;脉石矿物以石榴石、辉石、石英等为主。为了确定该矿石中铜、金的适宜回收工艺,进行了选矿试验。结果表明,矿石在磨矿细度为-0.074 mm占70%的情况下进行1粗2精快速浮选,1粗2扫常规浮选,快速精选1尾矿与常规粗选精矿合并再磨至-0.038 mm占80%的情况下进行1粗2精2扫铜硫分离,获得的快速浮选精矿铜品位为27.05%、金品位为8.28 g/t,铜、金回收率分别为60.79%、50.90%;常规浮选铜精矿铜品位为17.06%、金品位为5.02 g/t,铜、金回收率分别为29.81%、23.99%。快速浮选+常规浮选、快速精选1尾矿与常规浮选粗精矿再磨再选工艺流程既能避免铜矿物的过磨,保证铜的回收率,又可得到较高品位的铜精矿,获得较好的铜、金回收指标。  相似文献   

14.
王普蓉  王举 《金属矿山》2020,49(7):83-88
云南某氧化锡矿Sn含量为0.170%、Fe含量为4.66%,泥化现象严重,属含铁、低品位、高泥难选锡矿石。为开发适宜的选别工艺流程并确定最佳工艺条件,在原矿性质研究的基础上开展了该矿石的选矿工艺研究。结果表明:①矿石中含锡0.170%,-0.019 mm细泥含量为12.74%,矿石中主要有用矿物为锡石,其次为褐铁矿,主要脉石矿物为石英;锡主要以锡石及酸溶锡的形式存在,选别难度较大。②螺旋溜槽抛尾是该矿适宜的预先抛尾方式,最佳工艺条件为洗矿分级后+0.212 mm粗粒磨矿至-0.074 mm占56.25%、螺旋溜槽截矿器精矿端宽度55 mm、螺旋溜槽给矿矿浆浓度30%、螺旋溜槽给矿矿浆速率3.0 m3/h,在此基础上可获得产率为32.65%、锡品位为0.424%、锡回收率为81.43%的溜槽精矿。③溜槽锡精矿摇床精选可获得锡品位较高的摇床锡精矿,摇床锡精矿强磁选除铁可获得高品位合格锡精矿。④矿石经“螺旋溜槽预先抛尾—摇床精选—强磁选除铁”的联合工艺流程,可获得产率为0.22%,锡品位41.860%,锡回收率为54.17%的锡精矿,及产率为0.68%,锡品位4.950%,锡回收率为19.80%的锡富中矿,锡累计回收率为73.97%,选矿产品含杂均不超标,较好地实现了该锡矿的分选。  相似文献   

15.
针对攀西地区选钛尾矿中微细钛铁矿难以回收利用的问题,本文采用SLon-100周期式脉动高梯度磁选机和SL-400离心机开展微细钛铁矿分选试验研究。结果表明,对TiO2品位4.77%的选钛尾矿,采用SLon强磁一粗一扫一精选预富集、钛精矿分级,可得到TiO2品位为18.36%的-0.037mm微细钛粗精矿;该粒级钛粗精矿采用SL-400离心机一粗一扫—精选、精选尾矿和扫选精矿合并再选的工艺,可以获得作业产率42.39%、TiO2品位30.95%、TiO2作业回收率71.04%的钛精矿,为后续浮选精矿、生产合格钛精矿产品创造良好的条件。该研究结果说明了SL离心机用于分选攀西地区微细钛铁矿的可行性,对提升攀西地区钛铁矿资源的开发利用水平提供了一种新的技术思路。  相似文献   

16.
莫桑比克某海滨砂矿TiO2品位3.33%, 为开发利用该资源, 开展了重选-磁选工艺试验研究。原矿搅拌调浆后, 经过螺旋溜槽一次粗选和一次精选、重选精矿弱磁选、弱磁尾矿强磁选工艺处理, 可获得TiO2品位39.15%、TiO2回收率74.63%的钛精矿。研究成果为该资源的后续处理提供了数据支撑和技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号