首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
针对多数单帧图像超分辨率(single image super-resolution,SISR)重建方法存在的特征信息发掘不充分、特征图各通道之间的相互依赖关系难以确定以及重建高分辨率(high resolution,HR)图像时存在重构误差等问题,提出了基于深度残差反投影注意力网络的图像超分辨率(SR)算法。即利用残差学习的思想缓解训练难度和充分发掘图像的特征信息,并使用反投影学习机制学习高低分辨图像之间的相互依赖关系,此外引入了注意力机制动态分配各特征图以不同的注意力资源从而发掘更多的高频信息和学习特征图各通道之间的依赖关系。实验结果表明了所提方法相比于多数单帧图像超分辨率方法,不仅在客观指标方面得到了显著的提升,而且重建的预测图像也具有更加丰富的纹理信息。  相似文献   

2.
梁敏  王昊榕  张瑶  李杰 《计算机应用》2021,41(5):1438-1444
针对深层网络架构的图像超分辨率重建任务中存在网络参数多、计算复杂度高等问题,提出了一种基于加速残差网络的图像超分辨率重建方法。首先,构建一个残差网络对低分辨率图像与高分辨率图像之间的高频残差信息进行重建,以减少冗余信息的深层网络传输过程,提高重建效率;然后,通过特征收缩层对提取的低分辨率特征图进行降维,从而以较少的网络参数实现快速映射;之后,对高分辨率特征图通过特征扩展层进行升维,从而以较丰富的信息重建高频残差信息;最后,将残差与低分辨率图像求和得到重建的高分辨率图像。实验结果表明,该方法取得的峰值信噪比(PSNR)及结构相似性(SSIM)均值结果较基于卷积神经网络的图像超分辨率(SRCNN)取得的结果分别提升了0.57 dB和0.013 3,较基于中间层监督卷积神经网络的图像超分辨率重建(ISCNN)取得的结果分别提升了0.45 dB和0.006 7;在重建速度方面,以数据集Urban100为例,较现有方法提高了1.5~42倍。此外,将该方法应用于运动模糊图像的超分辨率重建时,获得了优于超深卷积神经网络的图像超分辨率(VDSR)的性能。所提方法以较少的网络参数快速获得较好的重建质量,并且为图像超分辨率重建提供了新的思路。  相似文献   

3.
基于双重注意力机制的图像超分辨重建算法   总被引:1,自引:0,他引:1       下载免费PDF全文
李彬  王平  赵思逸 《图学学报》2021,42(2):206-215
近年来,卷积神经网络(CNN)在单幅图像超分辨率重建领域(SISR)展现出良好效果。深度网络 可以在低分辨率图像和高分辨率图像之间建立复杂的映射,使得重建图像质量相对传统的方法取得巨大提升。 由于现有 SISR 方法通过加深和加宽网络结构以增大卷积核的感受野,在具有不同重要性的空间域和通道域采 用均等处理的方法,因此会导致大量的计算资源浪费在不重要的特征上。为了解决此问题,算法通过双重注意 力模块捕捉通道域与空间域隐含的权重信息,以更加高效的分配计算资源,加快网络收敛,在网络中通过残差 连接融合全局特征,不仅使得主干网络可以集中学习图像丢失的高频信息流,同时可以通过有效的特征监督加 快网络收敛,为缓解 MAE 损失函数存在的缺陷,在算法中引入了一种特殊的 Huber loss 函数。在主流数据集 上的实验结果表明,该算法相对现有的 SISR 算法在图像重建精度上有了明显的提高。  相似文献   

4.
单张图像超分辨率重建受到多对一映射的困扰.对于给定的低分辨率图像块,存在若干高分辨率图像块与之对应.基于学习的方法受此影响,学习到的逆映射规则只能预测这些高分辨率图像块的均值,从而产生视觉上模糊的超分辨率重建结果.为了克服歧义性造成的高频细节损失,本文提出了一种基于深度网络,利用在线检索的数据进行高频信息补偿的图像超分辨率重建算法.该方法构建一个深度网络,通过三个分支预测高分辨率重建结果:一条旁路直接将输入的低分辨率图像输入到网络的最后一层;一条内部高频信息重建路径基于低分辨率图像回归预测高分辨率图像,重建高分辨率图像的主要结构;另一条外部高频信息补偿路径根据内部重建的结果,从在线检索到的相似图像中提取高频细节,对内部重建的重建结果进行细节补偿.在第二条路径中,为了有效提取高频信号并使之适应于内部重建的重建结构,本文在多层特征的测量和约束下,进行高频细节迁移.相比于之前基于云数据库的传统图像超分辨率方法,本文提出的方法是端对端可训练的(end-to-end trainable),因此通过在大数据上进行学习,方法能同时建模内部重建和外部补偿,并能自动权衡两者利弊而给出最优的重建结果.图像超分辨率重建的实验结果表明,相比于最新的超分辨率算法,本文方法在主客观评价中均取得了更加优越的性能.  相似文献   

5.
目的 现有的基于深度学习的单帧图像超分辨率重建算法大多采用均方误差损失作为目标优化函数,以期获得较高的图像评价指标,然而重建出的图像高频信息丢失严重、纹理边缘模糊,难以满足主观视觉感受的需求。同时,现有的深度模型往往通过加深网络的方式来获得更好的重建效果,导致梯度消失问题的产生,训练难度增加。为了解决上述问题,本文提出融合感知损失的超分辨率重建算法,通过构建以生成对抗网络为主体框架的残差网络模型,提高了对低分率图像的特征重构能力,高度还原图像缺失的高频语义信息。方法 本文算法模型包含生成器子网络和判别器子网络两个模块。生成器模块主要由包含稠密残差块的特征金字塔构成,每个稠密残差块的卷积层滤波器大小均为3×3。通过递进式提取图像不同尺度的高频特征完成生成器模块的重建任务。判别器模块通过在多层前馈神经网络中引入微步幅卷积和全局平均池化,有效地学习到生成器重建图像的数据分布规律,进而判断生成图像的真实性,并将判别结果反馈给生成器。最后,算法对融合了感知损失的目标函数进行优化,完成网络参数的更新。结果 本文利用峰值信噪比(PSNR)和结构相似度(SSIM)两个指标作为客观评价标准,在Set5和Set14数据集上测得4倍重建后的峰值信噪比分别为31.72 dB和28.34 dB,结构相似度分别为0.892 4和0.785 6,与其他方法相比提升明显。结论 结合感知损失的生成式对抗超分辨率重建算法准确恢复了图像的纹理细节,能够重建出视觉上舒适的高分辨率图像。  相似文献   

6.
针对现有基于深度学习的图像超分辨率重建方法,其对细节纹理恢复过程中容易产生伪纹理,并且没有充分利用原始低分辨率图像丰富的局部特征层信息的问题,提出一种基于注意力生成对抗网络的超分辨率重建方法.该方法中生成器部分是通过注意力递归网络构成,其网络中还引入了密集残差块结构.首先,生成器利用自编码结构提取图像局部特征层信息,并提升分辨率;然后,通过判别器进行图像修正,最终将图像重建为高分辨率图像.实验结果表明,在多种面向峰值信噪比超分辨率评价方法的网络中,所设计的网络表现出了稳定的训练性能,改善了图像的视觉质量,同时具有较强的鲁棒性.  相似文献   

7.
针对卷积神经网络中的图像超分辨率重建模型训练不稳定与收敛速度较慢等问题,提出一种可嵌入式并行网络框架(EPNF),用于单幅图像超分辨率重建任务。将现有的图像超分辨率网络模型作为EPNF框架的深层结构部分嵌入到该框架中,能够以较小参数代价加快所嵌入的超分辨率模型的收敛速度,在一定程度上提高模型的准确率。在EPNF网络结构的基础上,提出一种新的超分辨率重建方法EPNF_DCSR,采用稠密跳跃连接构造高分辨率(HR)图像的高频成分,并使用单层卷积构造HR图像的低频成分,合成一幅HR输出图像。实验结果表明,与当前主流的图像超分辨率算法相比,EPNF_DCSR具有更好的图像生成效果。  相似文献   

8.
单幅图像超分辨率(SISR)是指从一张低分辨率图像重建高分辨率图像.传统的神经网络方法通常在图像的空间域进行超分辨率重构,但这些方法常在重构过程中忽略重要的细节.鉴于小波变换能够将图像内容的"粗略"和"细节"特征进行分离,提出一种基于小波域的深度残差网络(DRWSR).不同于其他传统的卷积神经网络直接推导高分辨率图像(HR),该方法采用多阶段学习策略,首先推理出高分辨率图像对应的小波系数,然后重建超分辨率图像(SR).为了获取更多的信息,该方法采用一种残差嵌套残差的灵活可扩展的深度神经网络.此外,提出的神经网络模型采用结合图像空域与小波域的损失函数进行优化求解.所提出的方法在Set5、Set14、BSD100、Urban100等数据集上进行实验,实验结果表明,该方法的视觉效果和峰值信噪比(PSNR)均优于相关的图像超分辨率方法.  相似文献   

9.
孙超文  陈晓 《自动化学报》2021,47(7):1689-1700
针对现有图像超分辨率重建方法恢复图像高频细节能力较弱、特征利用率不足的问题, 提出了一种多尺度特征融合反投影网络用于图像超分辨率重建. 该网络首先在浅层特征提取层使用多尺度的卷积核提取不同维度的特征信息, 增强跨通道信息融合能力; 然后,构建多尺度反投影模块通过递归学习执行特征映射, 提升网络的早期重建能力; 最后,将局部残差反馈结合全局残差学习促进特征的传播和利用, 从而融合不同深度的特征信息进行图像重建. 对图像进行×2 ~ ×8超分辨率的实验结果表明, 本方法的重建图像质量在主观感受和客观评价指标上均优于现有图像超分辨率重建方法, 超分辨率倍数大时重建性能相比更优秀.  相似文献   

10.
目的 基于学习的图像超分辨率重建方法已成为近年来图像超分辨率重建研究的热点。针对基于卷积神经网络的图像超分辨率重建(SRCNN)方法网络层少、感受野小、泛化能力差等缺陷,提出了基于中间层监督卷积神经网络的图像超分辨率重建方法,以进一步提高图像重建的质量。方法 设计了具有中间层监督的卷积神经网络结构,该网络共有16层卷积层,其中第7层为中间监督层;定义了监督层误差函数和重建误差函数,用于改善深层卷积神经网络梯度消失现象。训练网络时包括图像预处理、特征提取和图像重建3个步骤,采用不同尺度因子(2、3、4)模糊的低分辨率图像交叉训练网络,以适应对不同模糊程度的图像重建;使用卷积操作提取图像特征时将参数pad设置为1,提高了对图像和特征图的边缘信息利用;利用残差学习完成高分辨率图像重建。结果 在Set5和Set14数据集上进行了实验,并和双三次插值、A+、SelfEx和SRCNN等方法的结果进行比较。在主观视觉评价方面,本文方法重建图像的清晰度和边缘锐度更好。客观评价方面,本文方法的峰值信噪比(PSNR)平均分别提高了2.26 dB、0.28 dB、0.28 dB和0.15 dB,使用训练好的网络模型重建图像耗用的时间不及SRCNN方法的一半。结论 实验结果表明,本文方法获得了更好的主观视觉评价和客观量化评价,提升了图像超分辨率重建质量,泛化能力好,而且图像重建过程耗时更短,可用于自然场景图像的超分辨率重建。  相似文献   

11.
目的 深层卷积神经网络在单幅图像超分辨率任务中取得了巨大成功。从3个卷积层的超分辨率重建卷积神经网络(super-resolution convolutional neural network,SRCNN)到超过300层的残差注意力网络(residual channel attention network,RCAN),网络的深度和整体性能有了显著提高。然而,尽管深层网络方法提高了重建图像的质量,但因计算量大、实时性差等问题并不适合真实场景。针对该问题,本文提出轻量级的层次特征融合空间注意力网络来快速重建图像的高频细节。方法 网络由浅层特征提取层、分层特征融合层、上采样层和重建层组成。浅层特征提取层使用1个卷积层提取浅层特征,并对特征通道进行扩充;分层特征融合层由局部特征融合和全局特征融合组成,整个网络包含9个残差注意力块(residual attention block,RAB),每3个构成一个残差注意力组,分别在组内和组间进行局部特征融合和全局特征融合。在每个残差注意力块内部,首先使用卷积层提取特征,再使用空间注意力模块对特征图的不同空间位置分配不同的权重,提高高频区域特征的注意力,以快速恢复高频细节信息;上采样层使用亚像素卷积对特征图进行上采样,将特征图放大到目标图像的尺寸;重建层使用1个卷积层进行重建,得到重建后的高分辨率图像。结果 在Set5、Set14、BSD(Berkeley segmentation dataset)100、Urban100和Manga109测试数据集上进行测试。当放大因子为4时,峰值信噪比分别为31.98 dB、28.40 dB、27.45 dB、25.77 dB和29.37 dB。本文算法比其他同等规模的网络在测试结果上有明显提升。结论 本文提出的多层特征融合注意力网络,通过结合空间注意力模块和分层特征融合结构的优势,可以快速恢复图像的高频细节并且具有较小的计算复杂度。  相似文献   

12.
Super-resolution (SR) is a long-standing problem in image processing and computer vision and has attracted great attention from researchers over the decades. The main concept of SR is to reconstruct images from low-resolution (LR) to high-resolution (HR).It is an ongoing process in image technology, through up-sampling, de-blurring, and de-noising. Convolution neural network (CNN) has been widely used to enhance the resolution of images in recent years. Several alternative methods use deep learning to improve the progress of image super-resolution based on CNN. Here, we review the recent findings of single image super-resolution using deep learning with an emphasis on distillation knowledge used to enhance image super-resolution., it is also to highlight the potential applications of image super-resolution in security monitoring, medical diagnosis, microscopy image processing, satellite remote sensing, communication transmission, the digital multimedia industry and video enhancement. Finally, we present the challenges and assess future trends in super-resolution based on deep learning.  相似文献   

13.
单幅图像超分辨率SISR重建指从单幅低分辨率图像恢复出高分辨率图像。深度学习方法越来越多地用于图像超分辨重建领域,由于深度网络模型可以自主学习低分辨率图像到高分辨率图像之间的映射关系,与传统方法相比在该领域展现出了更好的重建效果,因而 基于深度学习的方法已经成为目前图像超分辨率重建领域的主流方向。围绕现有的超分辨深度网络模型在重建方式、结构组成和损失函数方面展开的探索进行了综合论述,通过比较不同模型之间存在的异同点,分析了不同的模型构建方法存在的优缺点及适应的应用场景,同时比较不同网络模型在主流测试数据集上的重建效果,并对该领域的未来研究方向进行了展望。  相似文献   

14.
传统的图像超分辨率重建方法由于其计算局限性,无法对大批量或者模糊因子不同的图像做最优处理,也无法得出高分辨率图像。近年来随着深度学习神经网络越来越多被学者关注和青睐,其中卷积神经网络被成功应用于图像超分辨率重建。但是传统的图像超分辨率卷积神经网络,无论在训练速度,泛化能力,还是生成图像质量等方面仍存在问题。针对上述问题,对图像超分辨率重建的原理进行研究,对SRCNN模型在多种训练通道下的超分辨率效果进行了实验,并提出了基于多层特征提取层的图像超分辨率重建模型,采用新的优化方法,验证了多种包含不同层数体征提取层的卷积神经网络模型。实验证明该方法在一定程度上优于SRCNN方法,能够有效加快网络整体的训练速度。  相似文献   

15.
在医学影像图像处理过程中,由于成像技术和成像时间的限制,还无法获取满足诊断需求的清晰图像,这使得在现有技术和极短时间内所获取的医学病理图像需要进行超分辨率的重建处理;基于学习的图像超分辨率思想是从已建立的先验模型中重建出高频细节;在文章中,将要估计的高频信息认为是由主要高频和冗余高频两部分组成,提出了一种基于双字典学习和稀疏表示的医学图像超分辨率重建算法,由主要字典学习和冗余字典学习组成,分别渐近地恢复出主要高频细节和冗余高频细节;实验结果的数据分析和视觉效果显示,所提出双层递进方法能够恢复更多的图像细节且在性能指标上比现有的其他几种方法均有所提高。  相似文献   

16.
针对传统单幅图像超分辨率深度学习方法将不同尺度低分辨率视作独立任务的问题,提出一种以残差通道注意力模块作为特征提取,元上采样模块作为放大模块的超分辨率网络。残差通道注意力机制可以滤除冗余低频信息减少网络深度,使元上采样模块更好地训练不同尺度低分辨率图像特征间的关系,实现任意尺度的超分辨率网络。为了验证该方法有效性,在Set5、Set14、Urban100等公共数据集上实验。实验结果表明,该方法在整数与非整数倍尺度都能很好地恢复高分辨率图像。  相似文献   

17.
In this study, we present new deep learning (DL) method for fusing multi-focus images. Current multi-focus image fusion (MFIF) approaches based on DL methods mainly treat MFIF as a classification task. These methods use a convolutional neural network (CNN) as a classifier to identify pixels as focused or defocused pixels. However, due to unavailability of labeled data to train networks, existing DL-based supervised models for MFIF add Gaussian blur in focused images to produce training data. DL-based unsupervised models are also too simple and only applicable to perform fusion tasks other than MFIF. To address the above issues, we proposed a new MFIF method, which aims to learn feature extraction, fusion and reconstruction components together to produce a complete unsupervised end-to-end trainable deep CNN. To enhance the feature extraction capability of CNN, we introduce a Siamese multi-scale feature extraction module to achieve a promising performance. In our proposed network we applied multiscale convolutions along with skip connections to extract more useful common features from a multi-focus image pair. Instead of using basic loss functions to train the CNN, our model utilizes structure similarity (SSIM) measure as a training loss function. Moreover, the fused images are reconstructed in a multiscale manner to guarantee more accurate restoration of images. Our proposed model can process images with variable size during testing and validation. Experimental results on various test images validate that our proposed method yields better quality fused images that are superior to the fused images generated by compared state-of-the-art image fusion methods.  相似文献   

18.
目的 近几年应用在单幅图像超分辨率重建上的深度学习算法都是使用单种尺度的卷积核提取低分辨率图像的特征信息,这样很容易造成细节信息的遗漏。另外,为了获得更好的图像超分辨率重建效果,网络模型也不断被加深,伴随而来的梯度消失问题会使得训练时间延长,难度加大。针对当前存在的超分辨率重建中的问题,本文结合GoogleNet思想、残差网络思想和密集型卷积网络思想,提出一种多尺度密集残差网络模型。方法 本文使用3种不同尺度卷积核对输入的低分辨率图像进行卷积处理,采集不同卷积核下的底层特征,这样可以较多地提取低分辨率图像中的细节信息,有利于图像恢复。再将采集的特征信息输入残差块中,每个残差块都包含了多个由卷积层和激活层构成的特征提取单元。另外,每个特征提取单元的输出都会通过短路径连接到下一个特征提取单元。短路径连接可以有效地缓解梯度消失现象,加强特征传播,促进特征再利用。接下来,融合3种卷积核提取的特征信息,经过降维处理后与3×3像素的卷积核提取的特征信息相加形成全局残差学习。最后经过重建层,得到清晰的高分辨率图像。整个训练过程中,一幅输入的低分辨率图像对应着一幅高分辨率图像标签,这种端到端的学习方法使得训练更加迅速。结果 本文使用两个客观评价标准PSNR(peak signal-to-noise ratio)和SSIM(structural similarity index)对实验的效果图进行测试,并与其他主流的方法进行对比。最终的结果显示,本文算法在Set5等多个测试数据集中的表现相比于插值法和SRCNN算法,在放大3倍时效果提升约3.4 dB和1.1 dB,在放大4倍时提升约3.5 dB和1.4 dB。结论 实验数据以及效果图证明本文算法能够较好地恢复低分辨率图像的边缘和纹理信息。  相似文献   

19.
医学图像的清晰与否直接影响临床诊断。由于成像设备与环境因素的限制,往往不能直接获得高分辨率的图像,且大多数智能终端的硬件并不适合运行大规模深度神经网络模型,因此提出一种拥有较少的层和参数的轻量密集神经网络模型。首先,网络中使用密集块和跳层结构进行全局和局部图像特征学习,并将更多特征信息传入激活函数,从而使网络中浅层低级的图像特征更容易传播到高层,由此提高医学图像超分辨率重建的质量;然后,采用分阶段方法训练网络,并以双任务损失加强网络学习中的监督指导,从而解决高倍图像超分辨率重建导致的网络训练难度增加的问题。实验结果表明,与最近邻(NN)插值、双线性插值、双立方插值、基于卷积神经网络(CNN)的算法以及基于残差神经网络的算法相比,所提模型能更好地重建出医学图像的纹理细节,获得更高的峰值信噪比(PSNR)和结构相似性(SSIM),在训练速度和硬件消耗方面均取得了良好的效果,具有较高的实用价值。  相似文献   

20.
针对图像超分辨率重建中几何结构扭曲和细节缺失等问题,文中提出基于多残差网络的结构保持超分辨重建算法.在小波变换域和梯度域上进行深度学习.文中算法包含3种残差网络.残差梯度网络用于结构及边缘信息的重建.残差小波变换网络从整体上进行图像高频信息的重建.残差通道注意力网络通过调整网络注意力,着重学习重要的通道特征,从局部恢复图像高频信息,提高重建效率.实验表明,文中算法在定量结果和视觉效果方面均取得较优表现.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号