首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
为了解决特高压直流输电线路中的外绝缘问题,本文在实际海拔高度下,通过对两种大吨位玻璃绝缘子在不同盐密、不同灰密、不同染污情况下进行直流污闪特性试验,采集了大量的泄漏电流数据,并且应用了一种新的研究方法,对绝缘子在耐受临闪电压U50%时所记录的直流泄漏电流进行了统计分析,总结了泄漏电流脉冲幅值、数量统计、持续时间、电量等特征量随条件变化的规律。提出了一种新的能有效地反映判断绝缘子表面染污状态的特征量。  相似文献   

2.
泄漏电流监测在特高压直流绝缘子选型中的应用   总被引:1,自引:1,他引:0  
为了提高自然积污试验在特高压直流绝缘子选型中的正确性和可靠性,提出了在试验绝缘子上安装泄漏电流在线监测系统,并以测量与计算得到的绝缘子泄漏电流某些特征参量作为绝缘子选型的重要依据,并据此给出绝缘子选型的结果。以云广直流自然积污试验站2005-05至2007-09进行的直流绝缘子自然积污选型试验为研究对象,分析了积污期间各个绝缘子泄漏电流的特点,统计了绝缘子泄漏电流的某些特征量,提出了利用这些特征量加权评分的结果作为绝缘子选型的重要依据,并给出了利用该方法进行绝缘子选型的结果。对该方法所得选型结果与先前人工污秽试验所得选型结果进行比较后证明:两者结论完全一致,有效验证了所提泄漏电流特征量加权评分方法是可行和有效的。  相似文献   

3.
针对目前绝缘子在线监测系统基于泄漏电流信号分析的诊断和预警很难准确分析其表面的污秽放电状况的问题,提出了绝缘子泄漏电流信号的句法模式识别方法。该方法对泄漏电流信号进行分段线性化提取基元,然后根据给定的文法构成语言识别装置"有限自动机",并以此为判据判断泄漏电流信号是何种模式。在代号为Acqs的软件中嵌入了句法模式识别的模块,并对以下3种情况进行了实测验证:①不同湿润程度染污绝缘子的泄漏电流;②不同电压下轻度湿润染污绝缘子的泄漏电流;③极性效应。实测结果表明,利用句法模式识别方法能够获得泄漏电流信号全面的结构信息,从而可以更深入地把握绝缘子表面放电的特性,并且能对绝缘子泄漏电流的极性效应做出准确和全面的识别。  相似文献   

4.
为了解决特高压输电线路中的外绝缘问题,通过对大吨位玻璃绝缘子在不同盐密、不同灰密、不同染污情况下进行直流污闪特性试验,对其污闪特性进行了研究。试验表明:玻璃绝缘子和瓷绝缘子直流污闪特性相似;盐的大小、灰的大小及污秽分布情况对大吨位瓷绝缘子直流污闪特性影响较大。  相似文献   

5.
绝缘子污秽状态判断对电网安全工作意义重大。基于污秽绝缘子串等效电路的理论分析,建立了绝缘子串泄漏电流试验回路,对洁净及不同污秽情况下的绝缘子串泄漏电流进行了测量,并利用FFT变换分析绝缘子泄漏电流频谱,提取了泄漏电流基波阻性分量,研究了泄漏电流基波阻性分量同污秽度及相对湿度间的关系。结果表明,污秽干燥情况下,绝缘子泄漏电流较小且主要为容性电流;与洁净时相比,绝缘子串染污时总的泄漏电流及其基波分量的变化并不明显,而泄漏电流基波阻性分量同污秽盐密及相对湿度呈非线性关系,低湿度情况下变化更显著,可以通过泄漏电流基波阻性分量来表示绝缘子的污秽程度,这比利用总泄漏电流进行判断更有效;高湿度情况下泄漏电流基波阻性分量法已不适合判断绝缘子污秽度。且该方法无需对绝缘子串安装集流环,保证了系统安全性。  相似文献   

6.
高压绝缘子泄漏电流的线调频小波分形特征   总被引:2,自引:2,他引:0  
惠阿丽  林辉 《高电压技术》2010,36(5):1160-1166
随着电网电压等级的提高和各类污染的加剧,绝缘子污闪事故日益严重,通过有关特征量提取来实现绝缘子表面状态的监测是预防污闪、提高电网可靠性的关键。为判别高压绝缘子污闪和预测其风险,以线调频小波和分形理论为基础,研究了高压污秽绝缘子泄漏电流的线调频小波分维数,并与小波分维数进行比较。结果表明,从泄漏电流信号中提取线调频小波分维数作为信号特征能清楚地刻画染污绝缘子污秽闪络过程中泄漏电流的变化规律,线调频小波分维数的变化与泄漏电流的变换比对应小波分维数更为明显突出,同时在各阶段特征更加稳定。线调频小波分维数可作为模式识别的有效特征量对绝缘子污闪发展状态进行判别。  相似文献   

7.
盐雾是沿海及盐碱地区一种特殊的气象环境,盐雾环境下绝缘子的耐受电压会显著降低,威胁到输电线路的安全运行。为了研究绝缘子在盐雾环境下的耐压特性,对悬式瓷绝缘子XWP–300表面清洁和染污2种情况下的试品进行了盐雾试验。研究结果表明,当盐密和雾水电导率增大到一定程度时,绝缘子的50%耐受电压(U_(50%))趋于稳定;雾水电导率相同的情况下,绝缘子在NaNO_3盐雾中的50%U较在NaCl盐雾中的低,Na_2SO_4盐雾中的U_(50%)较高,但3种盐雾中的U_(50%)差异较小,盐雾对绝缘子耐受电压的影响主要取决于雾水电导率。分析清洁和染污绝缘子盐雾试验过程中的泄漏电流发现,清洁绝缘子表面泄漏电流幅值随时间呈现快速增长到最大值后趋于稳定的趋势,而染污绝缘子表面泄漏电流幅值随时间呈现先增大后减小的趋势。此外,根据清洁绝缘子在电压恒定时表面泄漏电流随雾浓度变化的规律,提出了清洁绝缘子在盐雾中采用电压升降法进行试验的改进方案。  相似文献   

8.
基于泄漏电流的绝缘子染污状态在线监测技术的发展   总被引:9,自引:0,他引:9  
从泄漏电流特性的研究、绝缘子染污状态评价的方法以及泄漏电流在线监测系统的研制等方面介绍了基于泄漏电流的绝缘子染污状态的发展动态及趋势。  相似文献   

9.
直流绝缘子串泄漏电流不仅是绝缘子金具腐蚀的主要原因,同时也是在线监测的一项重要指标。为了研究直流绝缘子串上不同位置绝缘子金具上的泄漏电流的组成及分布特性,文中建立了直流绝缘子串三维有限元模型,研究了绝缘子串上金具对导线、大地,以及绝缘子金具之间的电导,分析了绝缘子金具处泄漏电流的影响因素及分布特性。结果表明:直流绝缘子串不同位置金具上的泄漏电流存在较大的差异;绝缘子金具泄漏电流分为沿面泄漏电流和空间泄漏电流,沿面泄漏电流沿着绝缘子串表面流动,空间泄漏电流的一部分在绝缘子金具、空气、杆塔、大地之间流动,另一部分在绝缘子金具、空气、均压环、导线之间流动;直流绝缘子串电压分布情况是分布电容和分布电导共同作用而形成的动态平衡状态。该研究成果可为绝缘子金具腐蚀、泄漏电流在线检测以及绝缘子串等效电路的研究提供参考。  相似文献   

10.
染污绝缘子安全区泄漏电流检测中去除信号干扰方法   总被引:6,自引:0,他引:6  
针对染污绝缘子安全区泄漏电流信号包含大量噪声干扰、很难准确提取其有效特征量的问题,利用4种小波阈值去噪方法对不同信噪比的实测安全区泄漏电流信号进行去噪,提取去噪前后的泄漏电流波形、有效值以及3次谐波与基波幅值比这3个特征量,对比分析了其去噪效果,优选出最适合安全区泄漏电流特征量提取的小波去噪方法。通过分析得出在信噪比大于1.0时,对于安全区泄漏电流波形和有效值,自适应阈值是最佳的去噪方法;对于3次谐波与基波的幅值比,4种阈值去噪法获得的比值对真实比值的逼近效果基本一样。综合比较实测信号提取的各个特征量去噪前后的效果可知,自适应阈值法是提取安全区泄漏电流特征量的最佳去噪方法。  相似文献   

11.
张巧霞  畅刚  肖峥  曹晓庆 《中国电力》2015,48(1):115-120
为了协调220 kV与110 kV变电站布点关系,结合某省220 kV变电站三卷变压器10 kV低压侧直接向负荷供电(简称直供)的实际情况,对全省220 kV变电站进行统计分析,研究其直接供电的现状及运行中反映的问题,并有针对性地从技术和经济层面提出解决办法:对10 kV直供负荷供电时,将配电网规划和10 kV直供负荷相结合,优化配电网的结构,合理利用220 kV变电站的容量,由220 kV变电站向周边10 kV负荷系统直接供电,在确保供电可靠性的情况下,控制10 kV线路的送电距离。以上措施可挖掘现有电网的供电潜能,降低线路损耗,使电网布局更趋合理。  相似文献   

12.
随着储能技术的飞速发展,大规模储能系统已经成为保证电力系统可靠供电的一个重要手段。介绍了储能技术的类别及其在电力系统中的作用,并阐述了其在电力系统中的应用研究现状和目前的主要示范应用实例,论述了储能技术未来发展趋势。  相似文献   

13.
智能变电站中高频开关电源技术应用   总被引:1,自引:0,他引:1  
高频开关电源因其性能可靠、体积小、效率高等优点,已广泛应用于智能变电站直流系统中,为变电站安全、可靠运行提供保障。首先简单介绍了交直流一体化电源系统,然后分别对直流充电模块、通信电源模块、UPS电源模块作了详细分析,重点研究了高频开关电源的N+1冗余技术和均流技术。通过研究发现,这2种技术的应用提高了高频开关电源模块的可靠性。高频开关电源能够满足智能变电站对直流系统可靠性的要求。  相似文献   

14.
发电机惯量是电力系统频率特性分析与在线应用的重要参数。基于发电机正常运行时机端有功功率和频率的类噪声信号可对发电机惯量进行实时辨识。然而实测数据质量存在的缺陷,导致现有算法对实测数据辨识效果较差。为解决该问题,本文以谱分析与系统辨识理论为基础,通过参考系统估计、模型参数方差估计、惯量方差估计三个步骤,建立惯量辨识结果的先验方差统计量,在进行辨识前对类噪声数据段进行评价和筛选,提升了惯量辨识的准确度。基于仿真数据和实测数据的数据评估筛选结果验证了本文提出方法的有效性。结果表明,先验方差较小的数据段,惯量辨识的准确度较高。  相似文献   

15.
马晓博  陈敏  周辛男 《中国电力》2015,48(1):131-136
针对可再生能源发电受外界环境影响较大、难以控制,接入微电网后对其安全运行带来很大挑战的问题,指出在微电网中接入储能装置可有效地解决此问题;研究了微电网孤岛运行时储能容量的确定方法,提出了一种概率性最优的储能容量确定方法:计算了微电网调度出力与负荷需求的功率差额,并根据其概率函数密度曲线确定储能系统的最大充放电功率;根据储能系统不同时刻其充、放电量累计值的概率函数密度曲线,求出其最优储能容量,使电网能实现经济效益最优和可再生能源利用率最大。采用该方法确定微电网储能容量,具有求解方法简捷、所需储能容量小的特点。  相似文献   

16.
特高压线路工频参数测试干扰分析是选择适合工频参数测试方法及测试结果分析的重要基础。测试了1 000 kV皖南-浙北特高压线路正序和零序参数测试期间的干扰电压信号,分析了其频谱特征;在此基础上,通过与正序参数仿真计算值的对比分析了正序参数实际测试偏差。结果表明:皖南-浙北特高压同塔双回线路工频参数测试期间,干扰电压存在“三相不平衡性及时变性”的特点;工频法和异频法2种不同方法得到的线路参数测试结果存在一定差异;干扰电压“时变”时,线路工频参数测试宜采用异频法。  相似文献   

17.
基于暂态相关性分析的小电流接地故障选线方法   总被引:2,自引:0,他引:2  
小电流接地系统发生单相接地故障时,接地点产生的暂态故障电流包含了整个系统中全部的暂态故障电流特征量。非故障线路的三相暂态电流主要表现为对地电容电流,考虑到系统中存在的电感影响,健全线路中的两相电流差非常小,且波形与自身的暂态零序电流明显不相关,而故障线路的两相电流差与其暂态零序电流表现出明显的相关性。利用这一特征,首先对母线电压进行小波变换,通过三相近似系数比例AR检测配电网是否发生了单相接地故障,并找出故障相;然后,运用相关性分析比较各条线路的两相电流差与零序电流的相关性,能够正确地选出故障线路,文章通过MATLAB/SIMULINK建模,验证了该方法的正确性。  相似文献   

18.
Since started as a pilot project of regional power marketin June, 2003, East China power market has been actively andsteadily progressing, and has promulgated in succession amarket establishing program, market operating rules andspecifications for the functions of technical support systems.The technical support systems have been built up by stagesincluding the master station system in East China region and  相似文献   

19.
正Qingdao,China 7.16-19,2015 The International Conference on Electronic MeasurementInstruments(ICEMI)is the world's premier conference dedicated to the electronic measurement and test of devices,boards and systems that is covering the complete cycle from design,verification,test,diagnosis,failure analysis and process of manufactory and products  相似文献   

20.
正Qingdao,China7.16-19,2015The International Conference on Electronic MeasurementInstruments(ICEMI)is the world’s premier conference dedicated to the electronic measurement and test of devices,boards and systems that is covering the complete cycle from design,verification,test,diagnosis,failure analysis and process of manufactory and products  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号