首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidation behavior of Al2O3/TiAl in situ composites fabricated by hot-pressing technology was investigated at 900° in static air. The results indicate that the mass gains of the composites samples decrease gradually with increasing Nb2O5 content and the inert Al2O3 dispersoids effectively increase the oxidation resistance of the composites. The higher the Al2O3 dispersoids content, the more pronounced the effect. The primary oxidation precesses obey approximately the linear laws, and the cyclic oxidation precesses follow the parabolic laws. The oxidized sample containing Ti2AlN and TiAl phases in the scales exhibits excellent oxidation resistance. The oxide scale formed after exposure at 900°C for 120 h is multiple-layered, consisting mainly of an outer TiO2 layer, an intermediate Al2O3 layer, and an inner TiO2+Al2O3 mixed layer. From the outer layer to the inner layer, TiO2+Al2O3 mixed layer presents the transit of Al-rich oxide to Ti-rich oxide mixed layer. Near the substrate, cross-section micrograph shows a relatively loose layer, and micro- and macro-pores remain on this layer, which is a transition layer and transferres from Al2O3+TiO2 scale to substrate. The thickness of oxide layer is about 20 μm. It is also found that continuous protective alumina scales can not be observed on the surface of oxidation scales. Ti ions diffuse outwardly to form the outer TiO2 layer, while oxygen ions transport inwardly to form the inner TiO2+Al2O3 mixed layer. Under long-time intensive oxidation exposure, the internal Al2O3 scale has a good adhesiveness with the outer TiO2 scale. No obvious spallation of the oxide scales occurs. The increased oxidation resistance by the presence of in situ Al2O3 particulates is attributed to the enhanced alumina-forming tendency and thin and dense scale formation. Al2O3 particulates enhance the potential barrier of Ti ions from M/MO interface to O/MO interface, thereby the TiO2 growth rate decreases, which is also beneficial to improve the oxidation resistance. Moreover, the multi-structure of the TiO2+Al2O3 mixed layer decreases the indiffusion of oxygen ions and also avails to improve the high temperature oxidation resistance of the as-sintered composites. Supported by the Special Program for Education Bureau of Shaanxi Province, China (Grant No. 08JK240) and Scientific Research Startup Program for Introduced Talents of Shaanxi University of Technology, China (Grant No. SLGQD0751)  相似文献   

2.
BaPbO3 thin films were deposited on Al2O3 substrates by sol-gel spin-coating and rapid thermal annealing. The microstructure and phase of BaPbO3 thin films were determined by X-ray diffractometry, scanning electrons microscopy and energy dispersive X-ray spectrometry. The influence of annealing temperature and annealing time on sheet resistance of the thin films was investigated. The results show that heat treatment, including annealing temperature and time, causes notable change in molar ratio of Pb to Ba, resulting in the variations of sheet resistance. The variation of electrical properties demonstrates that the surface state of the film changes from two-dimensional behavior to three-dimensional behavior with the increase of film thickness. Crack-free BaPbO3 thin films with grain size of 90 nm can be obtained by a rapid thermal annealing at 700 ℃ for 10 min. And the BaPbO3 films with a thickness of 2.5 μm has a sheet resistance of 35 Ω·-1.  相似文献   

3.
Fe-Al intermetallics with remarkable high-temperature intensity and excellent erosion, high-temperature oxidation and sulfuration resistance are potential low cost high-temperature structural materials. But the room temperature brittleness induces shape difficult and limits its industrial application. The Fe-Al intermetallic coatings were prepared by high velocity arc spraying technology with cored wire on 20G steel, which will not only obviate the problems faced in fabrication of these alloys into useful shapes, but also allow the effective use of their outstanding high-temperature performance. The Fe-Al/WC intermetallic composite coatings were prepared by high velocity arc spraying technology on 20G steel and the oxidation performance of Fe-Al/WC composite coatings was studied by means of thermogrativmetic analyzer at 450, 650 and 800°C. The results demonstrate that the kinetics curve of oxidation at three temperatures approximately follows the logarithmic law. The composition of the oxidized coating is mainly composed of Al2O3, Fe2O3, Fe3O4 and FeO. These phases distribute unevenly. The protective Al2O3 film firstly forms and preserves the coatings from further oxidation. Foundation item: Project(50235030) supported by the National Natural Science Foundation of China; Project(98BK014) supported by the Foundation of State Economy Trade Committee of China  相似文献   

4.
The isothermal oxidation behavior at 900–1300°C for 20 h in air of bulk Ti3AlC2 with 2.8 wt% TiC sintered by means of hot pressing was investigated in the work. The isothermal oxidation behavior generally followed a parabolic rate law. The parabolic rate constants increased from 1.39×10−10 kg2·m−4·s−1 at 900°C to 5.56×10−9 kg2·m−4·s−1 at 1300°C. The calculated activation energy was 136.45 kJ/mol. It was demonstrated that Ti3AlC2 had excellent oxidation resistance due to the continuous, dense and adhesive protect scales consisted of a mass of α-Al2O3 and a little of TiO2 and/or Al2TiO5. In principle, the oxide scale was grown by the inward diffusion of O2− and the outward diffusion of Ti4+ and Al3+. The rapid outward diffusion of cations usually resulted in the formation of cracks, gaps, and holes.  相似文献   

5.
The crystallization behavior and transparent property of MgO-Al2O3-SiO2 (MAS) glasses with TiO2 and TiO2+ZrO2 as nucleating agents were discussed by differential thermal analysis, X-ray diffraction, field emission-environment scanning electron microscope, energy dispersive spectrum and UV-VIS-NIR scanning spectrophotometer. It was found that the glass crystallized at 950 ℃ with ZrO2 less than 3% could obtain transparent glass ceramic, which presented purple to colorless. With the nucleating agent additives (5% TiO2+3% ZrO2), the colorless transparent glass-ceramics with spinel as the main crystal phase could be prepared, and the transmittance reached about 80% . As the crystallized temperature increase to 1 000 ℃, besides spinel(MgAl2O4), sapphirine (Mg3.5Al9Si1.5O20) and ZrTiO4 precipitated from matrix glass, and the transmitance of glass-ceramic decreased.  相似文献   

6.
A novel technology of in-situ coating Al2O3 on the surface of H4TiO4 was developed to prevent the aggregation of nano-TiO2 powders and improve the dispersibility and thermal stability in the way of forming a uniform coating layer. The heterogeneous nucleation was conducted to prepare the precursor of nano-TiO2 and then Al2O3 was coated on the surface of precursor. The effects of Al2O3 in-situ coating on the properties of nano-TiO2 were investigated. The results show that H4TiO4 can be dispersed well under alkaline condition (pH 8.5) and the heterogeneous nucleation can be controlled easily. The optimized uniform coating layer is obtained by adding 5% (mass fraction) and 10% of Al2O3 and the aggregation of nano-TiO2 powders is effectively inhibited and the dispersibility is obviously improved. The crystal sizes of TiO2 powders are 12.3, 11.4 and 8.7 nm after coating 0,5% and 10% of Al2O3 respectively. Al2O3 on the surface of particulates in amorphous phase could increase the thermal stability of nano-particles after calcined at 550 °C. Foundation item: Project(04GK2007) supported by Hunan Industrial Key Project of Science and Technology  相似文献   

7.
The isothermal and cyclic oxidizing kinetics of Co-40Cr alloy and its yttrium ion-implanted samples were studied at 1000℃ in air by thermal-gravity analysis (TGA). Scanning electronic microscopy (SEM) was used to examine the Cr203 oxide film's morphology after oxidation. Secondary ion mass spectroscopy (SIMS) method was used to examine the binding energy change of chromium caused by yttrium doping. Acoustic emission (AE) method was used in situ to monitor the cracking and spalling of oxide films formed on both samples during oxidizing and subsequent air-cooling stages. It is found that yttrium implantation remarkably reduces the isothermal oxidizing rate of Co-40Cr and improves the anti-cracking and anti-spalling properties of Cr2O3 oxide film. The reasons for the improvements are mainly that implanted yttrium reduces the grain size of Cr2O3 oxide, increases the high temperature plasticity of oxide film, and remarkably reduces the number and size of Cr2O3/Co-40Cr interfacial defects.  相似文献   

8.
In order to improve the corrosion resistance of AZ31 magnesium alloy, the amorphous/nanocrystal Al-Cr-Fe film has been successfully prepared on AZ31 magnesium alloy by double glow plasma technology. The amorphous/nanocrystalline consists of two different regions, i.e., an amorphous layer on outmost surface and an underlying lamellar nanocrystalline layer with a grain size of less than 10 nm. The corrosion behavior of amorphous/nanocrystalline Al-Cr-Fe film in 3.5% NaCl solution is investigated using an electrochemical polarization measurement. Compared with the AZ31 magnesium alloy, the amorphous/nanocrystalline Al-Cr-Fe film exhibits more positive corrosion potentials and lower corrosion current densities than that of AZ31 magnesium alloy. XPS measurement reveals that the passive film formed on the Al-Cr-Fe film after the anodic polarization tests is strongly enriched in Cr2O3, Fe2O3 and Al2O3 at outer surface of the film and in the inner layer consists of Cr2O3, FeO and Al2O3. Supported by the National Natural Science Foundation of China (Grant Nos. 50571045 and 50704022) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2007591)  相似文献   

9.
Co/Al2O3 Fischer-Tropsch synthesis catalysts with different cobalt loadings were prepared using incipient wetness impregnation method. The effects of cobalt loading on the properties of catalysts were studied by means of X-ray diffraction (XRD), temperature programmed reduction (TPR), hydrogen temperature programmed desorption (H2-TPD) and O2 titration. Co-support compound formation can be detected in catalyst system by XRD.For the Co/Al2O3 catalysts with low cobalt loading, CoAl2O3 phase appears visibly. Two different reduction regions can be presented for Co/Al2O3 catalysts, which belong to Co3 O4 crystallites (reduction at 320 ““C) and cobalt oxidealumina interaction species (reduction at above 400℃). Increasing Co loading results in the increase of Co3 O4 crystallite size. The reduced Co/Al2O3 catalysts have two adsorption sites, and cobalt loading greatly influences the adsorption behavior. With the increase of cobalt loading, the amount of low temperature adsorption is increased, the amount of high temperature adsorption is decreased, and the percentage reduction and cobalt crystallite size are increased.  相似文献   

10.
The preparation technique and properties of Ag-type inorganic antibiotic material carried by Al2O3 were studied. The results show that the material has good antibiotic and safety properties, the acute toxicity taken by stomata is LD 50>8 000 mg/kg (little and big white rats), and the normal quantity in subacute toxicity test is 80 mg/(kg · d). The better mass fraction of doping Ag2O in antibiotic material carried by Al2O3 is 4%–8%, and the optimal sintering temperature is from 1 000 °C to 1 100 °C. Foundation item: Project (2002AA327090) supported by National High Technology Research and Development Program of China  相似文献   

11.
Nanocomposites MgFe2O4/SiO2 were successfully synthesized by the sol-gel method in the presence of N, N-dimethylformamide (DMF). The formation of pure MgFe2O4 was confirmed by powder X-ray diffraction (XRD) and electron diffraction. The structural evolution of MgFe2O4 nanocrystals was followed by powder X-ray diffraction and IR absorption spectroscopy. The formation of spinel structure of MgFe2O4 started at 800 °C, and completed at 900 °C. The transmission electron microscopy (TEM) measurements suggest that the particle sizes increase with the increasing annealing temperature, and the mean particle sizes of the spherical samples annealed at 800 °C, 900 °C and 1 050 °C are ca. 3 nm, 8 nm and 11 nm, respectively. Magnetization measurements at room temperature and 78 K indicate superparamagnetic nature of these MgFe2O4 nanocrystals. Funded by the National Natural Science Foundation of China(No. 30771676), the Natural Science Foundation of Jiangsu Province (No. BK20081842), and the Foundation of Nanjing Bureau of Personal for the Returned Overseas Chinese Excellent Scholars  相似文献   

12.
Test alloys ZG40Cr24 with alloying of 3 wt% aluminium were cast by intermediate frequency induction furnace. The oxidation resistance of test alloys at 1 000 ℃ for 500 hours was examined according to oxidation weight gain method. The scale morphology and composition were studied using scanning electron microscope (SEM) and X-ray diffraction (XRD) respectively. By energy dispersive spectroscopy (EDS) studies, a kind of composite oxide scale compounded highly by Cr2O3, Al2O3 and spinel MCr2O4 in molecule scale came into being at high temperature. With flat and compact structure, fine and even grains, such composite scale granted complete oxidation resistance to alloy ZG40Cr24. The oxidation resistance mechanism was studied deeply in electrochemistry corrosion. The P+N semiconductor composite scale composed plenty of inner PN junctions, of which the unilateral conductive and the out-of-order arrangement endowed itself insulating in all directions. The positive and negative charges in scale could not move, and the mobile number and transferring rate of them both dropped enormously, as a result, the oxidation rate of the matrix metal was cut down greatly. So the composite scale presented excellent oxidation resistance.  相似文献   

13.
The ignition-proof mechanism of ZM5 magnesium alloy added with 0.1% (mass fraction) rare earth (RE) was investigated. The oxide scales and substrates were characterized by scanning electronic microscope (SEM), X-ray diffraction (XRD), energy dispersive spectrometer (EDS) and tensile test. And an oxidation model of ZM5 alloy with RE was established. The results show that the ignition temperature of ZM5 alloy is particularly elevated from 654 to 823 ℃, the microstructure is refined, and the tensile strength i...  相似文献   

14.
TiO2 thin films were deposited on quartz substrates by DC reactive magnetron sputtering of a pure Ti target in Ar/O2 plasma at room temperature. The TiO2 films were annealed at different temperatures ranging from 300 to 800 °C in a tube furnace under flowing oxygen gas for half an hour each. The effect of annealing temperatures on the structure, optical properties, and morphologies were presented and discussed by using X-ray diffraction, optical absorption spectrum, and atomic force microscope. The films show the presence of diffraction peaks from the (101), (004), (200) and (105) lattice planes of the anatase TiO2 lattice. The direct band gap of the annealed films decreases with the increase of annealing temperature. While, the roughness of the films increases with the increases of annealing temperature, and some significant roughness changes of the TiO2 film surfaces were observed after the annealing temperature reached 800 °C. Moreover, the influences of annealing on the microstructures of the TiO2 film were investigated also by in situ observation in transmission electron microscope.  相似文献   

15.
Al2 O3/Al composite was fabricated by the reaction between SiO2 and molten aluminum. The microstructures of the composite obtained under different reaction conditions were analyzed. The formation mechanism of the composite microstructure was discussed. Results show that the reaction kinetics is influenced remarkably by the reaction temperature, reaction time and the quantity of SiO2. The morphologies of Al2O3 have different features, depending on the reaction temperature. The composite has equaxed Al2O3 grains when materials reacted below 1200°C, and the composite is composed of a large number of fine Al2O3 grains and aluninum. The composite has a frame-shaped Al2O3 microstructure at the reaction temperature of above 1250°C. CHENG Xiao-min: Born in 1964 Funded by the National Natural Science Foundation of China (No. 91522)  相似文献   

16.
Al_xO_y films by DC reactive magnetron sputtering were annealed in air ambient at 500 ℃for 1 h with different heating rates of 5,15,and 25 ℃/min.Then heat treatments at 900 ℃ were carried out on these 500 ℃-annealed films to simulate the high-temperature application environment.Effects of the annealing heating rate on structure and properties of both 500 ℃-annealed and 900 ℃-heated films were investigated systematically.It was found that distinct γ-Al_2O_3 crystallization was observed in the 900 ℃-heated films only when the annealing heating rates are 15 and 25 ℃/min.The 500 ℃-annealed film possessed the most compact surface morphology in the case of 25 ℃/min.The highest microhardness of both 500 ℃-annealed and 900℃-heated films were obtained when the annealing heating rate was 15 ℃/min.  相似文献   

17.
To improve the performance, the surface of 12Mn2O4 was coated with very fine MgO , Al2O3 and ZnO by solgel method, respectively. The structure and morphology of the coated materials were investigated by X-ray diffraction ( XRD ), X-ray photoelectron spectroscopy ( XPS ) and scanning electron microscopy (SEM). The charge and discharge performance of uncoated and surfnce modified 12Mn2O4 spinel at 25℃ and 55 ℃ were tested, using a voltage window of 3.0-4.35 V and a current deasity of 0. 1 C rate. There is a slight decrease in the initial discharge capacity relative to that of uncoated UMn2 O4, bat the cycle ability of 12 12Mn2O4 coated by metal-oxide has remarkably been improved. The EIS measuremeuts of uncoated and Al2O3 -coated 12Mn2O4 were carried out by a model 273 A potentiostatl galvanistat controUed by a computer using M270 software, and using a freqnency response analyzer ( Zsimpwin ) combined with a potentiostate ( PAR 273). Coaseqnently, the reason for the improved cycle properties is that the surface modification reduces the dissolution of Mn , which results from the suppression of the electrolyte decomposition, and suppresses the formation of passivation film that acts as an electronic insulating layer. In conclusion, the use of surface modification is an effective way to improve the electrochemical performance of 12Mn2O4 cathode material for lithium batteries.  相似文献   

18.
ZnO-B2O3-SiO2-Al2O3-Na2O glass doped with nucleating agent TiO2 was prepared with melting-quenching method and the effect of nucleating agent on the crystallization behavior and phase evolution of this glass was investigated by differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The experimental results show that the glass transition temperature and the first crystallization temperature decrease from 630 °C and 765 °C to 595 °C and 740 °C, respectively, with introduction of TiO2 into glass. There is no diffraction peaks in the XRD pattern but it is no longer transparent for the base glass without nucleating agent after heat treatment, which suggests the serious phase separation occurred, and the observation by SEM indicates that the phase separation is developed by nucleation and growth mechanism. However, there are two different crystals ZnAl2O4 and NaAlSiO4 present in the glass containing TiO2 after heat treating at 575 °C for 2 h and 740 °C for 6 h, respectively. What is interesting is that NaAlSiO4 disappears as the crystallization time at 740 °C increases from 6 h to 12 h, and more ZnAl2O4 crystal is formed, namely, the further formation of ZnAl2O4 is at cost of NaAlSiO4 with increasing crystallization time. And observation of the morphology of glass ceramics shows great difference with increasing crystallization time. Moreover, the ability of ZnO-B2O3-SiO2-Al2O3-Na2O glass ceramics against attacking of 1M HCl solution is increased by the crystals precipitated in heat treatment process.  相似文献   

19.
An alloy steel/alumina composite was successfully fabricated by pressureless infiltration of X10CrNi18-8 steel melt on 30%(mass fraction) Ni-containing alumina based composite ceramic(Ni/Al2O3) at 1 600 ℃.The infiltration quality and interfacial bonding behavior were investigated by SEM,EDS,XRD and tensile tests.The results show that there is an obvious interfacial reaction layer between the alloying steel and the Ni/Al2O3 composite ceramic.The interfacial reactive products are(FexAly)3O4 intermetallic phas...  相似文献   

20.
A series of Ni-Fe-Ga alloys near the prototype Heusler composition (X2YZ) were prepared through arc-melting suction-casting method. The dependences of the transformation behavior on the alloy composition and annealing treatment were studied in detail by an optical microscope, X-ray diffraction, and differential scanning calorimeters methods. The experimental results show that the martensitic transformation temperatures increase almost linearly with increasing Ni content in all the NiFeGa alloys. Annealing the Ni55.5Fe18Ga26.5 alloy at 100?C500 °C for 3 h and at 300 °C for 1?C10 h shifts the martensitic transformation start temperature by almost 20 °C to high temperature. The variations in the martensitic transformation temperatures in these alloys are discussed in terms of structural differences resulting from alloy composition and annealing treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号