首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this study for the first time, the effects of decrease in heat inflow to the weld metal in friction stir process by utilising semisolid processing and decreasing the pin rotational speed as well as increasing the pin transverse speed were examined. As a result, the characteristic loss of hardness and strength in the weld zone were eliminated. The results showed that by approaching the ultrafine microstructure in the weld zone through the hybrid FSW/SSW process, the hardness and elongation values reached to 90?Hv and 8.88%, respectively. These are only slightly different from those of the base metal of the welded samples. Furthermore, the ultimate tensile strength of the samples welded by the hybrid technique was found to be about 167?MPa that was higher than those of the samples welded by friction stir welding (151?MPa) and semisolid welding (114?MPa) techniques.  相似文献   

2.
采用直径为16 mm且表面刻有逆时针旋转的螺旋槽的轴肩,直径为6 mm的圆柱形光面搅拌针且沿长度方向加工三个对称平台的自持式搅拌摩擦焊搅拌头,成功进行了3 mm厚ZK60镁合金薄板自持式搅拌摩擦焊,研究了焊接参数对接头表面成形、缺陷的形成及力学性能的影响。研究结果表明,搅拌头旋转速度为600r/min不变,焊接速度较低时,接头上、下表面产生沟槽缺陷,增大焊接速度获得表面无缺陷的接头,过分增加焊接速度,在前进侧和后退侧分别形成线状缺陷和孔洞缺陷,接头的力学性能随焊接速度的增大线增大后减小;采用焊接速度为400 mm/min不变,采用较低的搅拌头旋转速度时,接头表面鱼鳞纹均匀、成形美观、接头表面和内部均无缺陷,旋转速度过分增大,鱼鳞纹粗糙,在前进侧和后退侧接头内部分别产生线状缺陷和孔洞缺陷,接头力学性能随搅拌头旋转速度增大而减小。接头最大的抗拉强度为270 MPa,断后伸长率为8. 92%,接头强度系数达到87%。  相似文献   

3.
秦丰  张春波  周军  乌彦全  梁武  巫瑞智 《焊接学报》2022,43(6):56-60+95+116
采用静止轴肩搅拌摩擦焊方法实现了10 mm厚5A06铝合金T形接头的焊接. 通过低主轴转速匹配高焊接速度与高主轴转速匹配低焊接速度两组不同的焊接参数,结合拉伸试验、宏观与微观金相分析、电子背散射衍射(electron backscattered diffraction,EBSD)分析与扫描电镜(scanning electron microscope,SEM)断口分析,研究了热输入对焊接接头力学性能与组织的影响. 结果表明,在两组焊接参数下均可获得无孔洞缺陷的全焊透T形接头,焊缝表面光滑平整,几乎无减薄发生;热输入不同会改变搅拌针与周围材料的摩擦形式,引起焊缝出现弱结合缺陷,并影响接头抗拉强度; 在高主轴转速匹配低焊接速度时,焊缝中心重叠区顶部易产生弱结合缺陷,导致接头抗拉强度较低,为198 MPa,拉伸试样断裂在筋板. 在低主轴转速匹配高焊接速度时,焊缝无缺陷存在,接头抗拉强度为287 MPa, 拉伸试样断裂在底板.  相似文献   

4.
ODS钢搅拌摩擦焊接头的微观组织及其高温力学性能   总被引:2,自引:2,他引:0       下载免费PDF全文
张静  韩文妥  常永勤  万发荣 《焊接学报》2015,36(10):9-11,40
采用搅拌摩擦焊(friction stir welding,FSW)技术对氧化物弥散强化(oxide dispersion strengthen,ODS)铁素体钢进行了焊接,并对焊接工艺进行了优化. 当转速为150 r/min,焊接速度为30 mm/min时可以获得无焊接缺陷的ODS钢焊接接头. 结果表明,采用FSW焊接的ODS钢接头的微观组织出现明显的洋葱环结构,搅拌区为等轴再结晶晶粒,前进侧热机影响区表现出明显的塑性流动的特征,热影响区的晶粒较母材也发生了明显改变. 接头的高温拉伸性能偏低,但经过温度1 150 ℃,时间1 h的热处理后,其高温拉伸性能得到大幅提高,与母材拉伸性能接近.  相似文献   

5.
基于CEL模型的搅拌摩擦焊接7055铝合金仿真模拟   总被引:1,自引:0,他引:1  
基于耦合的欧拉—拉格朗日(CEL)模型,建立了高可靠性、高精度的搅拌摩擦焊7055铝合金热力耦合计算模型,开展了焊接工艺参数对7055铝合金焊接接头温度、等效应变以及缺陷预测结果的影响规律的研究,并分析和讨论了搅拌摩擦焊试验验证模拟结果的可靠性. 7055铝合金搅拌摩擦焊CEL模型预测结果表明,温度和等效塑性应变与转速呈正比,与焊接速度呈反比,这主要与焊接工艺参数影响轴肩与7055铝合金的摩擦生热及材料的流动,使焊接温度和等效塑性应变值发生变化有关.当焊接速度在60 ? 300 mm/min、转速在300 ? 1 200 r/min范围内,焊接温度均低于7055铝合金熔点,当焊接速度增加到300 mm/min时,由于产热不足,温度和等效塑性应变均降低,此时在焊接接头处容易产生孔洞缺陷.7055铝合金搅拌摩擦焊试验结果表明,当转速为600 r/min、焊接速度为180 mm/min时,7055铝合金接头组织致密,接头抗拉强度达到489 MPa,断后伸长率为4.0%.当焊接速度提高至300 mm/min时,接头抗拉强度为411 MPa,断后伸长率仅为1.0%.这与产热不足导致接头处结合较差有关,与模拟结果一致.  相似文献   

6.
针对6 mm厚6061-T6铝合金板材,设计制造了不同结构形式和尺寸规格的双轴肩搅拌摩擦焊工具,并对搅拌摩擦焊工具的结构形式和尺寸规格对焊接过程及焊接接头质量的影响进行了系统的分析研究:设计制造了两体式和三体式双轴肩搅拌摩擦焊工具,并对两种结构形式进行分析;设计制造了环状轴肩和凹面轴肩,通过焊接工艺试验得知凹面轴肩焊缝成形性优于环状轴肩;设计制造了正-反螺纹搅拌针、正螺纹搅拌针、整圆柱搅拌针和圆柱铣扁搅拌针;圆柱铣扁搅拌针焊缝焊接质量优于其他三种结构形式的搅拌针。采用凹面轴肩和圆柱铣扁搅拌针组装成的搅拌头,对6 mm厚6061-T6铝合金板材进行焊接,在主轴转速为800 r/min、焊接速度为150 mm/min工艺参数下,焊接接头得到最大抗拉强度值为220MPa,达到母材抗拉强度(315 MPa)的70%。  相似文献   

7.
铝合金回填式搅拌摩擦点焊组织及力学性能分析   总被引:6,自引:5,他引:1       下载免费PDF全文
采用回填式搅拌摩擦点焊技术对7075-T6铝合金进行了点焊试验.对接头进行了显微组织、显微硬度、剪切和十字形拉伸测试.结果表明,接头显微组织可分为焊核区、热力影响区、热影响区及母材;在焊缝中发现了钩状缺陷、孔洞、未焊合、未完全回填及粘连韧带等缺陷;焊缝区显微硬度呈W形分布,焊点中心呈V形分布;在旋转频率为1 400 r/min,焊接时间为4s时,接头的抗剪强度达到最大值125.6 MPa,为母材强度的39.6%;接头的十字形拉伸载荷随工艺参数的变化规律比较复杂,最大十字形拉伸强度可达43.9 MPa.  相似文献   

8.
AA2219 aluminium alloy (Al-Cu-Mn alloy) has gathered wide acceptance in the fabrication of lightweight structures requiring a high strength-to-weight ratio and good corrosion resistance. In contrast to the fusion welding processes that are routinely used for joining structural aluminium alloys, the friction stir welding (FSW) process is an emerging solid state joining process in which the material that is being welded does not melt and recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters such as tool rotational speed, welding speed, axial force etc., and the tool pin profile play a major role in determining the joint strength. An attempt has been made here to develop a mathematical model to predict the tensile strength of friction stir welded AA2219 aluminium alloy by incorporating FSW process parameters. A central composite design with four factors and five levels has been used to minimize the number of experimental conditions. The response surface method (RSM) has been used to develop the model. The developed mathematical model has been optimized using the Hooke and Jeeves search technique to maximize the tensile strength of the friction stir welded AA2219 aluminium alloy joints.  相似文献   

9.
Silicon carbide particulate (SiCp) reinforced cast aluminium (Al) based metal matrix composites (MMCs) have gained wide acceptance in the fabrication of light weight structures requiring high specific strength, high temperature capability and good wear resistance. Friction stir welding (FSW) process parameters play major role in deciding the performance of welded joints. The ultimate tensile strength, notch tensile strength and weld nugget hardness of friction stir butt welded joints of cast Al/SiCp MMCs (AA6061 with 20% (volume fraction) of SiCp) were investigated. The relationships between the FSW process parameters (rotational speed, welding speed and axial force) and the responses (ultimate tensile strength, notch tensile strength and weld nugget hardness) were established. The optimal welding parameters to maximize the mechanical properties were identified by using desirability approach. From this investigation, it is found that the joints fabricated with the tool rotational speed of 1370 r/min, welding speed of 88.9 mm/min, and axial force of 9.6 kN yield the maximum ultimate tensile strength, notch tensile strength and hardness of 265 MPa, 201 MPa and HV114, respectively.  相似文献   

10.
Q235钢板与6082铝合金搅拌摩擦焊工艺   总被引:2,自引:2,他引:0       下载免费PDF全文
王希靖  邓向斌  王磊 《焊接学报》2016,37(1):99-102
通过对Q235钢板和6082铝合金进行搅拌摩擦焊接,并用正交试验对搅拌摩擦焊工艺参数进行优化. 结果表明,焊接过程中,将钢板放在返回侧,铝板放在前进侧[1],离搅拌针较近的钢侧金属发生软化,并且在轴肩横向切应力作用下形成短"钉子",最终在搅拌针的旋转作用下填充到搅拌针后方形成的空腔内,当下压量为0.2 mm时,比较容易得到优质的焊缝;搅拌针旋转速度为260 r/min,焊接速度为16 mm/min,针头偏向铝侧0.2 mm时,所得焊缝的抗拉强度为141.204 MPa,断裂发生在铝侧焊核区与热力影响区的交界处;钢侧热机影响区的硬度比母材高,而铝侧热机影响区比母材低.  相似文献   

11.
Taguchi approach was applied to determine the most influential control factors which will yield better tensile strength of the joints of friction stir welded RDE-40 aluminium alloy. In order to evaluate the effect of process parameters such as tool rotational speed, traverse speed and axial force on tensile strength of friction stir welded RDE-40 aluminium alloy, Taguchi parametric design and optimization approach was used. Through the Taguchi parametric design approach, the optimum levels of process parameters were determined. The results indicate that the rotational speed, welding speed and axial force are the significant parameters in deciding the tensile strength of the joint. The predicted optimal value of tensile strength of friction stir welded RDE-40 aluminium alloy is 303 MPa. The results were confirmed by further experiments.  相似文献   

12.
In this study, 2.4 mm thick high-strength martensitic steel plates with a tensile strength of 1500 MPa were friction stir welded at various welding speeds of 40, 60, 80, 100, 120 mm/min and a constant rotation speed of 300 rpm. Sound joints could be obtained when the welding speed was 40, 60 and 80 mm/min, while a kissing bond was found in the joint welded at 100 and 120 mm/min. It was revealed that the peak temperature exceeded AC3 (the end temperature at which all ferrite transformed to austenite when the steel was heated) for all the welding conditions and martensitic structures were finally formed in the stir zone of the joints. A significant decrease in hardness was located in the heat-affected zone, which had a transitional microstructure from tempered martensite near base metal to a mixed structure containing hard martensite, soft ferrite and bainite near stir zone. For the sound joints, the specimen was fractured in the heat-affected zone during tensile tests and the highest tensile strength could reach about 1058 MPa.  相似文献   

13.
紫铜与低碳钢厚板搅拌摩擦焊工艺分析   总被引:2,自引:2,他引:0  
用搅拌摩擦焊方法成功焊接了 10 mm 厚的紫铜与低碳钢板,得到了内部无缺陷、外观成形良好的接头.紫铜位于搅拌摩擦焊返回边时,能使焊缝形成良好接头.反之,位于前进边时则有沟槽和未焊合等缺陷.右旋螺纹搅拌针会使焊缝材料向上作螺旋形运动,接头有明显的轴肩影响区,缺陷容易在焊缝底部出现.左旋螺纹搅拌针使搅拌针周围的塑化金属向下迁移,在焊缝下部形成明显的呈"洋葱环"形焊核区,缺陷容易在焊缝上部出现.搅拌针偏移量对焊缝形貌有较大影响.接头抗拉强度达 233 MPa,为铜母材强度的 95%,断裂位置在铜侧热影响区.焊核区抗拉强度达 296 MPa,远超过紫铜母材的强度.
Abstract:
The joining of dissimilar metals, T2 copper and Q235 mild steel plates with 10 mm thickness, is carried out in friction stir welding. Excellent welds can be gained when copper is fixed at the retreating side, but defects can be produced in welds when copper is fixed at the advancing side. The pin shapes influence the flow of the plasticized metal in the weld, which results in the variety of the morphology of the weld. If the screw thread on the pin is clockwise, the metal around the pin will move upwards to the root of the pin, which causes that the shoulder affected zone is clear and the weld defects would form at the lower part of the weld section. If the screw thread on the pin is counter-clockwise, the metal around the pin will move downwards, which drives the metal around the pin tip to move around and upwards. The onion ring pattern, which appears like lamellar structure, is observed in the stir zone. The shoulder-affected zone is not clear; the weld defects will form at the upper part of the weld section. Various pin offsets will affect the flow of weld metal. If an optimization of the process parameters is performed, defeet-free joints can be formed. The tensile test results show that the maximum joint tensile strength can reach 233 MPa, which is 95% of the parent materials of copper, and the fracture happens in the HAZ of copper. The maximum tensile strength of the nugget zone can reach 296 MPa, which is very considerably larger than that of the parent materials of copper.  相似文献   

14.
Friction stir welding (FSW) parameters, such as tool material, tool geometry, tilt angle, tool rotational speed, welding speed, and axial force play a major role in the weld quality of titanium alloys. Because of excessive erosion, tool material and geometry play the main roles in FSW of titanium alloys. Therefore, in the present work for the first time, tool material and geometry, tool tilt angle, cooling system and shielding gas effects on macrostructure, microstructure, and mechanical properties of pure titanium weld joint were investigated. Result of this research shows that Ti can be joined by the FSW, using a tool with a shoulder made of tungsten (W) and simple pin made of tungsten carbide (WC). The best conditions for welding were use of compressed air as a cooling system, tool tilt angle of 1°, and a stream of Argon as a shielding medium. Investigation on mechanical properties shows that the tensile strength and the yield strength of the welded joint in the best case could be similar to the corresponding strengths of the base metal.  相似文献   

15.
为解决传统搅拌摩擦焊接过程中的焊缝减薄问题,以轨道交通领域常用的6082-T6铝合金作为研究对象,从轴肩下压量为零的角度出发,通过轴肩端面圆形内凹槽及搅拌针周向螺纹复合三铣平面的设计,获得了无减薄且成形良好的焊接接头. 结果表明,当焊接速度一定时,转速的增加可提高焊接热输入,抑制焊缝缺陷的产生. 相较于转速400, 600 r/min下的接头可焊区间得到了有效拓宽,焊接速度最高可达400 mm/min;焊接过程的热循环受焊接速度与转速的耦合作用. 焊接热循环过大,焊缝易出现粗大组织,影响焊接接头的强度. 在转速600 r/min、焊接速度500 mm/min的参数下,接头抗拉强度达254 MPa,为母材强度的80%.  相似文献   

16.
采用搅拌摩擦焊和不同功率的超声辅助搅拌摩擦焊对2219-T351铝合金进行焊接试验,测量焊接温度和焊接压力,对焊接接头的微观组织、显微硬度和力学性能进行分析,研究了加入不同超声功率后焊缝的组织性能和材料流动性. 结果表明,超声能降低焊接温度,随着超声功率增加减小的幅度越大. 加入了超声后,焊缝微观组织更加均匀,底部材料的流动情况得到改善,焊缝区有更多的强化相残留,焊接接头的显微硬度、抗拉强度及断后伸长率在加入超声后均有提高,在加入2.25 kW的超声功率时达到最高,最高拉伸强度为331 MPa,可达到母材的80%左右.  相似文献   

17.
AA1100 aluminum alloy has gathered wide acceptance in the fabrication of light weight structures. Friction stir welding process (FSW) is an emerging solid state joining process in which the material that is being welded does not melt and recast. The process and tool parameters of FSW play a major role in deciding the joint characteristics. In this research, the relationships between the FSW parameters (rotational speed, welding speed, axial force, shoulder diameter, pin diameter, and tool hardness) and the responses (tensile strength, hardness, and corrosion rate) were established. The optimal welding conditions to maximize the tensile strength and minimize the corrosion rate were identified for AA1100 aluminum alloy and reported here.  相似文献   

18.
针对厚4.3 mm的AZ31B镁合金短针设计搅拌摩擦焊接,研究工艺参数对根部未焊合率的影响,并通过接头组织与拉伸断口形貌分析,分析了根部未焊合对接头抗拉强度的影响。结果表明:焊接速度一定时,当搅拌头旋转速度超过临界值950 r/min时,随着转速的增加,接头根部未焊合率降低。当旋转速度一定时,焊接速度对接头未焊合率几乎无影响。所有拉伸试样均在根部未焊合界面处起裂并发生断裂,而焊合区断口呈现典型的韧脆混合断裂特征。此外,接头抗拉强度随着根部未焊合率的降低而升高,当旋转速度为1 180 r/min、焊接速度120 mm/min时,接头的抗拉强度达到最大值188 MPa,为母材强度的76.4%。  相似文献   

19.
Copper plates ,brass plates and copper/brass plates were friction stir welded with various parameters. Experimental results show that the microstructure of the weld is characterized by its much finer grains as contrasted with the coarse grains of parent materials and the heat-affected zones are very narrow. The microhardness of the copper weld is a little higher than that of parent plate. The microhardness of brass weld is about 25% higher than that of parent material. The tensile strength of copper joints increases with increasing welding speed in the test range. The range of parameters to obtain good welds for copper is much wider than that for brass. When different materials were welded, the position of copper plate before welding affected the quality of FSW joints. If the copperplate was put on the advancing side of weld, the good quality of weld could be got under proper parameters.  相似文献   

20.
AA2219 aluminium alloy has gathered wide acceptance in the fabrication of light weight structures requiring a high strength to weight ratio. Compared to the fusion welding processes that are routinely used for joining structural aluminium alloys, friction stir welding (FSW) process is an emerging solid state joining process in which the material that is being welded does not melt and recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters and tool pin profile play major roles in deciding the weld quality. In this investigation, an attempt has been made to understand the effect of welding speed and tool pin profile on FSP zone formation in AA2219 aluminium alloy. Five different tool pin profiles (straight cylindrical, tapered cylindrical, threaded cylindrical, triangular and square) have been used to fabricate the joints at three different welding speeds. The formation of FSP zone has been analysed macroscopically. Tensile properties of the joints have been evaluated and correlated with the FSP zone formation. From this investigation it is found that the square pin profiled tool produces mechanically sound and metallurgically defect free welds compared to other tool pin profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号