首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 182 毫秒
1.
以纯镁铸锭作为坯料,经过两道次累计大比率挤压制备了棒材,并对最终的棒材进行退火处理。通过光学显微镜(OM)、力学性能测试和扫描电子显微镜(SEM)研究了挤压变形和退火处理对纯镁组织、性能以及断裂行为的影响。结果表明:在挤压变形过程中,由于动态再结晶的作用,材料的晶粒尺寸得到明显细化,从而显著地改善了材料的室温力学性能和断裂方式。经过一次挤压后,粗大的铸态晶粒细化到35μm,屈服、抗拉强度和伸长率分别达到84MPa、189MPa和12%,所得棒材经再次挤压后,屈服强度超过120MPa,但是,由于加工硬化的作用,伸长率有所下降。对最终棒材进行退火处理后,平均晶粒尺寸为9~10μm,屈服强度、抗拉强度分别达到124MPa、199MPa,伸长率为10.7%,材料的组织和性能得到明显改善。  相似文献   

2.
研究Mg-1Si铸造镁合金在挤压温度为623 K和挤压路径为BC条件下,等通道转角挤压(ECAP)不同道次变形对其组织及室温力学性能的影响。结果表明,随着挤压道次增加,α-Mg基体、Mg2Si相均得到细化且趋于均匀分布;铸态试样屈服强度为55 N/mm2,抗拉强度为93 N/mm2,伸长率为6%;1道次挤压试样的屈服强度提高67%,抗拉强度提高86%,伸长率提高95%;2道次挤压试样的抗拉强度和屈服强度与1道次相比有所降低,但伸长率进一步提高;3、4道次后试样的组织和性能相差不大;随着挤压道次增加,合金的伸长率逐渐提高,塑性提高。  相似文献   

3.
研究了不同挤压温度和挤压比对Mg-4Al-1Zn-0.6Ca-0.6Si-0.4Nd镁合金显微组织和力学性能的影响.结果表明,挤压变形可以显著细化镁合金的晶粒,大幅度提高材料的抗拉强度,屈服强度和伸长率.较低的挤压温度和较高的挤压比配合可以更好地细化晶粒.在挤压比为16,挤压温度为330℃时,合金的抗拉强度、屈服强度、伸长率分别达到375MPa、305MPa、14%.  相似文献   

4.
利用快速凝固和往复挤压制备细晶ZK60合金,并研究合金的组织与力学性能。结果表明,快速凝固薄带晶粒尺寸为1~8μm,2道次往复挤压后,合金晶粒尺寸为3μm,大量10-50 nm的颗粒从基体析出。随着挤压道次增加,沉淀颗粒增多,晶粒未进一步细化;2道次挤压后,合金抗拉强度高达319 MPa;屈服强度随挤压道次增加而增加,经6道次挤压,屈服强度为253 MPa,伸长率和硬度随挤压道次增加变化不大,分别为(7±1)%和(77±1)HV5。力学性能好归因于晶粒细化和弥散分布在基体上细小颗粒的强化作用。  相似文献   

5.
采用扫描电镜、显微硬度计及万能试验机研究了挤压速度对双通道等径角挤压对7003铝合金力学性能的影响。结果表明:在任一挤压速度下,随着挤压道次的增加,材料的力学性能明显改善;挤压一道次后试样的抗拉强度由338.3 MPa提高到384.5 MPa,二道次后提高到431.5 MPa;屈服强度经一道次挤压后由260 MPa提高到325 MPa,二道次后提高到426 MPa,二道次涨幅更明显;随着挤压速度的增大,试样断后伸长率的变化总体上均呈现下降的趋势,当挤压速度为25 mm/min 时,一道次挤压后伸长率最小;经二道次挤压后的显微硬度,在挤压速度为25 mm/min时由原样退火态的73.5 HV提高到136.4 HV,且强度以及显微硬度均在挤压速度为25~35 mm/min时达到了最大值。  相似文献   

6.
通过循环扩挤(CEEOP)变形方法对100 mm×50 mm×170 mm的AZ80镁合金块状材料进行挤压加工,借助计算机模拟仿真、组织观察、拉伸试验、硬度测试等手段研究了1~4道次CEEOP变形对AZ80镁合金等效应变、显微组织和力学性能的影响。结果表明:随着CEEOP挤压道次的增加,晶粒的尺寸越来越小且分布均匀,1道次后晶粒尺寸可以从200μm左右细化到6μm,4道次后晶粒尺寸细化到1.5μm左右,整体分布均匀呈等轴晶晶粒,晶粒细化的机制是晶粒的机械破碎和动态再结晶,2道次以后晶粒细化效果不太明显。力学性能较均匀化退火态有了大幅度的提升,1道次硬度HB从均匀化退火态的615 MPa提升到了830.7 MPa,4道次达到862.7 MPa,抗拉强度与屈服强度分别从均匀化退火态的230.9和115 MPa提升到了262.7和155 MPa,4道次可以达到294和170 MPa,通过对比ECAP变形试样的组织与力学性能数据,在相同的变形温度与累积应变下,CEEOP变形方法比ECAP变形能够更好地细化晶粒和提高材料的抗拉强度和屈服强度。  相似文献   

7.
研究了573K温度下等通道转角挤压前后Mg2Si增强镁锌基复合材料的显微组织和力学性能.结果表明,经过等通道转角挤压后,基体得到显著细化,Mg2Si增强相也南粗大的汉字状和长条状破碎成细小的颗粒状,并趋于弥散分布,同时力学性能得到显著提高.经4道次挤压后,材料的硬度由挤压前47.5 HV提高到50.3 HV,抗拉强度由128.9MPa提高到197.8MPa,屈服强度由32.7MPa提高到105.9MPa,伸长率由10.07%提高到23.41%.经8道次挤压后,基体晶粒发生一定程度的长大,材料的力学性能较4道次没有明显改善.经等通道转角挤压后,材料的断裂形式南脆性断裂转变为韧性断裂.  相似文献   

8.
通过循环扩挤(CEEOP)变形方法对100mm×50mm×170mm的 AZ80镁合金块状材料进行挤压加工,借助计算机模拟仿真、组织观察、拉伸试验、硬度测试等手段研究了1~4道次CEEOP变形对AZ80镁合金等效应变、显微组织和力学性能的影响。结果表明:随着CEEOP挤压道次的增加,晶粒的尺寸越来越小且分布均匀,1道次后晶粒尺寸可以从200μm左右细化到6μm,4道次后晶粒尺寸细化到1.5μm左右,整体分布均匀呈等轴晶晶粒,晶粒细化的机制是晶粒的机械破碎和动态再结晶,2道次以后晶粒细化效果不太明显。力学性能较均匀化退火态有了大幅度的提升,1道次硬度从均匀化退火态的61.5HB提升到了83.07HB,4道次达到86.27HB,抗拉强度与屈服强度分别从均匀化退火态的230.9MPa和115MPa提升到了262.7MPa和155MPa,四道次可以达到294MPa和170MPa,通过对比ECAP变形试样的组织与力学性能数据,在相同的变形温度与累积应变下,CEEOP变形方法比ECAP变形能够更好地细化晶粒和提高材料的抗拉强度和屈服强度。  相似文献   

9.
挤压比对Mg—Zn—Zr—RE合金组织和性能的影响   总被引:1,自引:0,他引:1  
研究了不同挤压比对铸态Mg-5.4Zn-0.3Zr-0.98RE镁合金微观组织和力学性能的影响。研究表明,当挤压比较小时,微观组织呈现出粗晶和细晶组成的混晶组织;随着挤压比增加到16,微观组织发生完全再结晶,获得均匀、细小的再结晶组织。动态再结晶是铸态镁合金Mg-5.4Zn-0.3Zr-0.98RE晶粒细化的机制。在挤压温度为250℃,挤压比为16时,合金获得的力学性能最好,抗拉强度为345MPa,屈服强度为223MPa,断后伸长率为21.4%。  相似文献   

10.
采用新型的锥台强剪切挤压变形方法将AZ31镁合金棒材挤压成板材。通过金相显微镜、拉伸性能测试及断口扫描分析研究冷却方式对锥台剪切变形镁合金的显微组织与力学性能的影响。结果表明:经锥台强剪切挤压变形后,镁合金上下表面受到强剪切变形,发生了充分的动态再结晶,组织得到明显的细化;经水冷后,镁合金板材的屈服强度、抗拉强度、伸长率分别为165.2 MPa、283.4 MPa和19.8%,相比于空冷的晶粒组织更加细小均匀,抗拉强度和屈服强度更高,同时,与挤压前相比,其屈服强度、抗拉强度及伸长率分别提高59.9%、83.2%和67.8%。  相似文献   

11.
Influence of equal channel angular extrusion on room temperature mechanical properties of cast Mg–9Al–Zn alloy was investigated. The results show that room temperature mechanical properties of Mg–9Al–Zn alloy, such as yield strength, ultimate tensile strength and elongation, can be improved heavily by equal channel angular extrusion. Processing routes, processing temperature and extrusion passes have important influence on room temperature mechanical properties of processed Mg–9Al–Zn alloy by equal channel angular extrusion. The optimum room temperature mechanical properties such as yield strength of 209 MPa, ultimate tensile strength of 339 MPa and elongation of 14.1%, can be obtained when Mg–9Al–Zn alloy was processed by equal channel angular extrusion for 6 passes at route BC at 498 K. Large bulk materials of Mg–9Al–Zn alloy with average grain size of 4 μm and high mechanical properties can be prepared.  相似文献   

12.
研究往复挤压对Mg-4Al-4Si(AS44)合金显微组织和性能的影响。结果表明:往复挤压显著地细化晶粒,改善组织的均匀性;往复挤压4道次和8道次后,Mg2Si颗粒尺寸由铸态下的约120μm分别减小至3和2μm,α-Mg基体晶粒尺寸由铸态下的约50μm分别减小至9和8μm,形成了较为细小、弥散分布的Mg2Si颗粒和细小的等轴晶组织。合金的力学性能随往复挤压道次的增加而显著提高,挤压8道次时,合金的极限抗拉强度、屈服强度和伸长率分别达到251.7 MPa、210.5 MPa和14.8%,与铸态合金相比,上述力学性能指标分别提高了131.3%、191.1%和469.2%;挤压态合金拉伸断裂形式为微孔聚合型韧性断裂。  相似文献   

13.
Mg-6Al-0.3Mn-xY(x=0,0.3,0.6 and 0.9,mass fraction,%) magnesium alloys were prepared by casting and hot rolling process.The influence of yttrium on microstructure and tensile mechanical properties of the AM60 magnesium alloy was investigated.The results reveal that with increasing the yttrium content,Al2Y precipitates form and the grain size is reduced.The ultimate strength,yield strength and elongation at room temperature are 192 MPa,62 MPa and 12.6%,respectively,for the as-cast Mg-6Al-0.3Mn-0.9Y alloy.All ...  相似文献   

14.
To avoid grain boundary (GB) precipitation during aging, a new strategy of in situ thermomechanical processing for age hardening alloys was proposed. Specifically, high-density nanoscale precipitates were introduced into ultrafine grain (UFG) interiors of 7075Al alloy by equal-channel-angular (ECAP) processing at 250 °C for 8 passes, thus avoiding GB precipitation. Tensile test results indicated that the UFG 7075Al alloy exhibits superior mechanical properties (yield strength of 350 MPa, ultimate tensile strength of 500 MPa, uniform elongation of 18% and tensile ductility of 19%) compared with the UFG 1050Al counterpart (yield strength of 170 MPa, ultimate tensile strength of 180 MPa, uniform elongation of 2.5% and tensile ductility of 7%). Fracture surface morphology studies revealed numerous homogeneous micro shear bands in necking shrinkage areas of both UFG 7075Al and 1050Al alloys, which are controlled by cooperative GB sliding. Moreover, the introduction of nanoscale precipitates in UFG 7075Al matrix weakened the tendency of shear fracture, resulting in a higher tensile ductility and more homogeneous deformation. Different from the GB precipitation during postmortem aging, in situ thermomechanical treatment dynamically formed GBs after precipitation, thus avoiding precipitation on GBs.  相似文献   

15.
往复挤压Mg-4Al-2Si合金的显微组织与高温力学性能   总被引:2,自引:0,他引:2  
研究了往复挤压Mg-4Al-2Si合金的显微组织与高温力学性能。结果表明,往复挤压可显著细化Mg-4Al-2Si合金的组织,随着挤压道次的增加,基体晶粒与Mg2Si相颗粒不断细化,其中,基体晶粒由于动态再结晶而细化。挤压8道次时,基体晶粒和Mg2Si颗粒的平均尺寸分别由铸态的45μm和20μm减小至1.5μm和1.3μm;但是,当挤压道次为11时,基体晶粒与Mg2Si相颗粒均出现粗化现象。往复挤压可使合金的高温力学性能大幅度提高,挤压8道次时,高温屈服强度最高,为197 MPa;挤压11道次时,高温抗拉强度最高,为256 MPa,与铸态高温强度相比,分别提高了163.9%和239.7%。合金的高温强化机制为Mg2Si颗粒的弥散强化作用,高温拉伸断裂形式为微孔聚合型韧性断裂。  相似文献   

16.
测试四种状态下ZK60合金的显微组织和力学性能,四种状态分别为:挤压;挤压+4道次ECAP;挤压+4道次ECAP+二次挤压;挤压+4道次ECAP+退火+二次挤压。在室温下成功地进行ZK60的二次挤压,得到超细晶组织。结果表明:ECAP和二次挤压可以显著细化晶粒。挤压+4道次ECAP+二次挤压后的ZK60合金的屈服强度为342MPa,但是其伸长率只有0.8%。在二次挤压之前进行退火,ZK60合金的伸长率可以提高到4.5%,而屈服强度基本不变,抗拉强度达到 388 MPa。  相似文献   

17.
等通道转角挤压制备超细晶Mg15Al双相合金组织与性能   总被引:1,自引:1,他引:0  
对高铝双相合金Mg15Al在553K以Bc路线进行了不同道次的等通道挤压(ECAP),获得了超细晶高铝镁合金。通过OM,SEM,TEM分析了ECAP前后合金的微观组织结构及断口形貌,并测试了不同挤压道次后合金的硬度和室温拉伸性能,分析了ECAP细化晶粒机理及其性能改善原因。结果表明,随挤压道次增加,累计形变增强,网状硬脆相β-Mg17Al12破碎,合金晶粒显著细化,但对单相区和两相混合区细化效果不同。在α、β两相共存区内,4道次ECAP后形成100nm~200nm的细晶粒;在α单相区,4道次ECAP后晶粒为1μm以下,且在初晶α-Mg内析出弥散细小的β相,起到细晶强化和弥散强化作用。8道次ECAP后,晶粒略有长大。ECAP使合金的硬度、抗拉强度和延伸率同时得到提高,尤其是4道次ECAP后,硬度提高了32.04%,抗拉强度σb从150MPa提高到269.3MPa,延伸率δ由0.05%提高到7.4%;8道次ECAP后,硬度、抗拉强度略有下降,延伸率略有上升。SEM断口观察显示ECAP使合金拉伸断口形貌由铸态的解理断裂特征转变为延性韧窝断裂特征。  相似文献   

18.
微量元素Sr对AM60B镁合金组织和性能的影响   总被引:2,自引:0,他引:2  
利用光学显微镜(OM)、场发射扫描电子显微镜(FESEM)、电子万能试验机、数显洛氏硬度计和显微硬度仪研究微量Sr对镁合金AM60B的铸态组织和力学性能的影响。结果表明,添加微量元素Sr可以细化镁合金的晶粒,而不改变基体α-Mg相的枝晶形貌,但可改变γ相的形态和大小,从连续或断续网状、长条状,变为卵石状或颗粒状。Sr对AM60B镁合金的抗拉强度和延伸率的影响具有相似的趋势,即随着Sr含量的增加,合金的抗拉强度和延伸率呈现先升后降的趋势,当Sr含量为0.05%时抗拉强度和延伸率分别达到最大值191.82MPa和4.63%,而洛氏硬度和显微硬度随着Sr含量的增加而增大。AM60B镁合金断裂方式存在着由解理断裂向准解理断裂再向解理断裂转化的模式。  相似文献   

19.
采用拉伸和硬度测试、扫描电镜和X射线衍射仪等手段,研究了不同Fe含量对挤压铸造Al-3.5Mg-0.8Mn合金显微组织和力学性能的影响。结果表明,Fe能改善合金的力学性能,合金中只存在Al6(FeMn)相。合金的抗拉强度和屈服强度随着Fe含量的增加而增大,伸长率随着Fe含量的增加而降低,原因是随着Fe含量增加,硬脆的Al6(FeMn)相增多。在挤压压力为75MPa和Fe含量为0.5%时,合金的综合力学性能最佳,其抗拉强度为252MPa,屈服强度为128MPa,伸长率为28%。  相似文献   

20.
借助光学显微镜、扫描电镜、X射线衍射仪和DNS100电子万能试验机研究AM60合金中加入Sm后的显微组织和力学性能,并分析Sm对合金显微组织和力学性能的影响。结果表明,添加元素Sm可以细化镁合金的晶粒,改变β相的形态和大小,从连续或断续网状、长条状,变为卵石状或颗粒状均匀弥散分布在α-Mg基体上,显著改善合金的显微组织。Sm的加入可形成稳定性较高的颗粒状Al2Sm高温化合物相。随着Sm含量的增加,合金的抗拉伸强度和伸长率呈现先升后降的趋势,当Sm含量为1.0%(质量分数,下同)时抗拉伸强度和伸长率分别达到最大值210MPa和6.9%。室温下AM60合金的断口呈解理断裂,加入Sm变质后其断口形貌表现为准解理+局部韧性断裂特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号