首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 781 毫秒
1.
采用Gleeble-1500D热模拟试验机研究机械合金化制备的ODS-310合金在变形温度为1 050~1 150℃、应变速率为0.001~1 s-1条件下的高温变形行为,测定其真应力-应变曲线,分析其流变应力与应变速率及变形温度三者之间的关系,并采用Zener-Hollomon参数法建立ODS-310合金的高温变形本构方程,基于动态材料模型,构造ODS-310合金的热加工图。结果表明:ODS-310合金的流变应力随变形温度降低或应变速率提高而增大;该合金热变形过程中的流变行为可用双曲线正弦模型来描述,在实验条件下的平均变形激活能为828.384 kJ/mol;真应变为0.4的热加工图表明,ODS-310合金在高温变形时存在2个加工失稳区,即变形温度为1 050~1 070℃、变形速率为0.01~1s-1的区域,和变形温度为1 130~1 150℃、变形速率为0.1~1 s-1的区域;ODS-310合金的最佳变形温度和应变速率分别为1 150℃和0.001 s-1。  相似文献   

2.
在Gleeble-1500热模拟机上,对5A01铝合金进行等温热压缩实验,研究该合金在变形温度为350~450℃、应变速率为0.01~1s-1条件下的热变形行为,建立其热加工图。结果表明:5A01铝合金是温度、正应变速率敏感材料,其流变应力随变形温度降低和应变速率升高而增大,利用峰值应力获得的该合金热加工图表明合金热变形存在两个失稳区域,即变形温度为350~390℃,应变速率为0.01~0.2s-1的区域和变形温度为405~450℃,应变速率为0.2~1s-1的区域;本实验条件下最佳加工参数为变形温度450℃,应变速率0.01s-1。  相似文献   

3.
为了解决Cr20Ni80电热合金锻造开裂的问题,在Gleeb-1500D热模拟试验机上对该合金进行热压缩试验,研究变形温度为900~1220℃,应变速率为0.001~10 s-1条件下的热变形行为,并根据动态材料模型建立合金的热加工图.合金的真应力-真应变曲线呈现稳态流变特征,峰值应力随变形温度的降低或应变速率的升高而增加;热变形过程中稳态流变应力可用双曲正弦本构方程来描述,其激活能为371.29 k J·mol-1.根据热加工图确定了热变形流变失稳区及热变形过程的最佳工艺参数,其加工温度为1050~1200℃,应变速率为0.03~0.08 s-1.优化的热加工工艺在生产中得到验证.  相似文献   

4.
采用Gleeble-3500热模拟试验机进行高温等温压缩实验,研究了GH690合金在变形温度为950~1200℃、应变速率为0.001~10.000 s-1条件下的热变形行为,利用动态材料模型构建了GH690合金热加工图,并基于加工图进行GH690合金管材热挤压实验。结果表明:GH690合金有应力峰和动态再结晶软化的特征,在ε≥0.4时,流动应力趋于稳定状态;在热加工图中变形温度为1100~1150℃、应变速率为1.0~2.5 s-1时功率耗散效率达到0.34~0.39,该区域对应的工艺参数适合于进行GH690合金管材热挤压;在热加工图中变形温度为950~1000℃,应变速率在0.94~10.00 s-1之间的区域为不稳定变形区域,热加工时应该避开这一区域。  相似文献   

5.
采用Gleeble-1500热模拟试验机进行了T91钢的压缩试验,研究了变形温度为1100~1250℃、应变速率为0.01~1 s-1时该钢的变形行为,分析了流变应力与应变速率和变形温度之间的关系,计算了高温变形时应力指数和变形激活能,并采用Zener-Hollomon参数法构建该钢高温塑性变形的本构关系,绘制了动态再结晶图和热加工图.结果表明:在试验变形条件范围内,其真应力-真应变曲线呈双峰特征;钢中发生了明显的动态再结晶,且再结晶类型属于连续动态再结晶.T91钢的热变形激活能为484 kJ.mol-1,利用加工图确定了热变形的流变失稳区,结合力学性能,可以优先选择的变形温度为1200~1 250℃,应变速率不高于0.1 s-1.   相似文献   

6.
粉末冶金TiAl合金热变形行为及加工图的研究   总被引:2,自引:1,他引:1  
采用热模拟压缩试验研究了粉末冶金TiAl合金在温度1000~1150℃、应变速率0.001~1s-1范围内的高温变形特性,发现合金的流动应力-应变曲线具有应力峰和流变软化特性。为了研究TiAl合金在有限应变下的变形行为,基于动态材料模型(DMM)建立起了TiAl合金加工图。试验结果表明,在高应变速率(0.1s-1)变形时,材料落入流动失稳区域,出现表面开裂。这对材料的变形是有害的,要避免在流动失稳区进行热加工处理。而在温度为1000~1050℃,应变速率为0.001~0.01s-1时,功率耗散率η值在35%~50%之间。这个区域对应的变形机制为动态再结晶,适合进行热加工。在高温(≥1100℃),低应变速率(0.001s-1)变形时,功率耗散率η达到最大值60%,此时材料发生超塑性变形。  相似文献   

7.
利用Gleeble-3800热模拟试验机对纯镍N6在变形温度800~1100℃,应变速率5~40 s-1,应变量70%条件下进行了高温塑性变形压缩试验,分析纯镍N6高温高应变速率热变形行为,得到了材料在不同变形参数条件下的组织变化规律及流变应力变化曲线,利用动态材料模型绘制出了纯镍N6在不同应变条件下的热加工图.通过对组织及热加工图的分析研究,得出变形温度为1000~1100℃,应变速率为5~7 s-1或20~40 s-1以及变形温度为800~900℃,应变速率为5~10 s-1为纯镍N6材料高温高应变速率热变形的两个合理变形参数区间,在参数区间内N6组织均匀;而流变失稳区变形参数条件下得到的组织比较紊乱,晶粒大小不一.纯镍N6热变形后的晶粒尺寸随变形温度升高及应变速率减小而增大.   相似文献   

8.
采用Gleeble1500热模拟试验机对Al-Li-Cu-Mg-Zn-Ag合金进行等温热压缩实验,研究其在变形温度范围为300~500℃,应变速率范围为0.001~10 s-1内的热变形行为。分析了合金流变曲线特征,构建该合金在真应变分别为0.1,0.3和0.5时的加工图并讨论了真应变为0.5时的安全区和失稳区组织特征。结果表明:Al-Li-Cu-Mg-Zn-Ag合金的流变曲线分为过渡变形阶段和稳态变形阶段,流变应力的数值随变形温度的升高而减小,随应变速率的增加而增大;3种真应变下的加工图显示,能量耗散因子具有相似的变化趋势,均在高温低速区达到峰值,失稳区覆盖的范围随应变量的增加而增大,当真应变为0.5时,失稳区参数为变形温度300~480℃,应变速率0.01~10.00 s-1;当真应变为0.5时,安全区以动态回复组织为主,有少量动态再结晶,失稳区组织出现了局部流变带;在变形量较小(真应变0.5)的情况下,建议Al-Li-Cu-Mg-Zn-Ag合金热加工工艺为变形温度范围410~480℃,应变速率范围0.003~0.100 s~(-1)。  相似文献   

9.
在应变速率为0.01~10.00 s-1、变形温度为700~850℃的条件下,通过热压缩实验研究Cu-Ag合金的高温流变行为,发现该合金高温流变应力对温度和应变速率比较敏感,且在不同条件下呈现的软化特征也有区别。通过双曲正弦本构方程和线性回归分析,得到了不同变形条件下,关于结构因子、材料参数、以及热变形激活能的6次多项式方程,从而建立了随材料参数变化的Cu-Ag合金流变应力本构模型。根据动态材料模型(DMM)建立功率耗散图和失稳图,并通过叠加得到Cu-Ag合金的热加工图,然后,利用热加工图确定了该合金的加工安全区和流变失稳区。分析可知Cu-Ag合金的最佳变形工艺参数主要处于3个区间:低温低应变速率区(变形温度为700~770℃,应变速率为0.0100~0.0316 s-1),该区域的峰值功率耗散系数η为0.46;高温中应变速率区(变形温度为780~835℃,应变速率为0.1~1.0 s-1),该区域的峰值功率耗散系数η为0.33;和高温高应变速率区(变形温度为835~850℃,应变速率为3.162~10.000 s-1),该区域的功率耗散系数η峰值为0.33。  相似文献   

10.
采用Gleeble-3500热模拟实验机对Cu-Cr-Zr合金进行了压缩变形实验,分析了在变形温度为25~700℃、应变速率为0.0001~0.1000s-1的条件下流变应力的变化规律,利用扫描电镜及透射电镜分析合金在热压缩过程中的组织演变及动态再结晶机制。结果表明:Cu-Cr-Zr合金在热变形过程中发生了动态再结晶,且变形温度和应变速率均对流变应力有显著的影响,流变应力随着变形温度的升高而降低,随着应变速率的增加而升高,说明该合金属于正应变速率敏感材料;当变形温度为400~500℃时,低应变速率(0.0001~0.0010 s-1)的真应力-真应变曲线呈现动态再结晶曲线特征,高应变速率(0.01~0.10 s-1)的真应力-真应变曲线呈现动态回复特征;在真应力-真应变曲线的基础上,采用双曲正弦模型能较好地描述Cu-Cr-Zr合金高温变形时的流变行为,建立了完整描述合金热变形过程中流变应力与应变速率和变形温度关系的本构方程,确定了合金的变形激活能为311.43 kJ·mol-1。  相似文献   

11.
马昕  许斯洋  周舸  丁桦 《中国冶金》2022,32(9):26-36
为获得Ni60Ti40形状记忆合金热变形的最佳工艺参数,利用等温恒速率热压缩试验研究了在温度为800~1 000 ℃、应变速率为0.005~5.000 s-1条件下Ni60Ti40合金的热变形行为,通过探究不同变形温度和应变速率对Ni60Ti40合金流变行为的影响创建本构关系,并以动态材料模型为基础构建热加工图。结果表明,Ni60Ti40合金的流变应力随变形温度的升高而减小、随应变速率的升高而增大。温度为900~1 000 ℃、应变速率为0.005~0.500 s-1时,流变应力较快达到稳态,且所需的变形量较少。采用Arrhenius双曲正弦模型构建的Ni60Ti40合金热变形的流变应力本构关系模型可基本准确地预测实际流变应力随工艺参数的变化趋势,计算得到Ni60Ti40合金的平均热变形激活能为213 kJ/mol。Ni60Ti40合金的热变形有3个稳定变形区和1个失稳区,适宜变形的区域为800~870 ℃/0.005~0.080 s-1、870~950 ℃/0.080~0.500 s-1和950~1 000 ℃/0.050~5.000 s-1;不适合进行热加工的区域为800~850 ℃/0.220~5.000 s-1。  相似文献   

12.
马昕  许斯洋  周舸  丁桦 《中国冶金》2006,32(9):26-36
为获得Ni60Ti40形状记忆合金热变形的最佳工艺参数,利用等温恒速率热压缩试验研究了在温度为800~1 000 ℃、应变速率为0.005~5.000 s-1条件下Ni60Ti40合金的热变形行为,通过探究不同变形温度和应变速率对Ni60Ti40合金流变行为的影响创建本构关系,并以动态材料模型为基础构建热加工图。结果表明,Ni60Ti40合金的流变应力随变形温度的升高而减小、随应变速率的升高而增大。温度为900~1 000 ℃、应变速率为0.005~0.500 s-1时,流变应力较快达到稳态,且所需的变形量较少。采用Arrhenius双曲正弦模型构建的Ni60Ti40合金热变形的流变应力本构关系模型可基本准确地预测实际流变应力随工艺参数的变化趋势,计算得到Ni60Ti40合金的平均热变形激活能为213 kJ/mol。Ni60Ti40合金的热变形有3个稳定变形区和1个失稳区,适宜变形的区域为800~870 ℃/0.005~0.080 s-1、870~950 ℃/0.080~0.500 s-1和950~1 000 ℃/0.050~5.000 s-1;不适合进行热加工的区域为800~850 ℃/0.220~5.000 s-1。  相似文献   

13.
在Cleeble-1500热/力模拟机上对2026合金进行了热压缩试验,研究了其在温度300~450℃和应变速率0.01~10 s-1条件下的热变形行为.结果表明:热变形过程中的流变应力可以很好用双曲正弦本构关系来描述,通过优化α值,可以更精确地得到该合金的表观激活能为230.51kJ/mo1.根据材料动态模型,计算并...  相似文献   

14.
Hot deformation behavior and processing maps of test steel were investigated at temperature range of 930-1230?? and the strain rate range of 0. 005-5s-1using isothermal hot compression tests by Gleeble3800 thermal- mechanical simulators. The change of microstructure of test steel with different deformation conditions was observed by means of metallographic microscope. The flow stress curve of the test steel was analyzed and its activation energy for thermal deformation was 571kJ/mol. The processing maps of the test steel were established when the true strain were 0. 4 and 0. 8, respectively. It is found that there are three boundaries of the peak area of dissipation power in processing map with the true strain of 0. 8. When the deformation temperature is 1230?? and the deformation rate is from 0. 005 to 5s-1, the microstructure of the test steel transitions from coarse serrated grains to finer equiaxed grains. When the deformation rate is 0. 5s-1 and the deformation temperature is increased from 930?? to 1230??, the microstructure changes from equiaxed structure and partially dynamic recrystallization structure to flow instability structure.  相似文献   

15.
The hot deformation behavior of as-cast AISI M2high-speed steel containing mischmetal(RE)has been investigated on a Gleeble-3500simulator in the temperature range of 1 000-1 150℃and strain rate range of 0.01-10 s-1 at true strain of 1.0.The mechanical behavior has been characterized using stress-strain curve analysis,kinetic analysis,processing maps,etc.Metallographic investigation was performed to evaluate the mechanism of flow instability.The results show that the deformation activation energy decreases with increasing deformation temperature; the efficiency of power dissipation increases with decreasing strain rate and increasing temperature;flow instability is observed at low-to-medium temperature and higher strain rate region when the strain is smaller,but extends to lower strain rate and high temperature regions with the increment of strain,in which it is manifested as flow localization near the grain boundary.Hot deformation equations and processing maps are obtained.The optimal processing window is suggested and the deformation mechanism is dynamic recrystallization(DRX).  相似文献   

16.
6069铝合金的热变形行为和加工图   总被引:2,自引:0,他引:2  
采用Gleeble-1500热模拟实验机在温度为300~450℃,应变速率为0.01~10 s?1条件下对6069铝合金进行热压缩实验,研究该合金的热变形行为及热加工特征,建立热变形本构方程和加工图。结果表明,6069铝合金热变形过程中的流变行为可用双曲正弦模型来描述,在实验条件下的平均变形激活能为289.36 kJ/mol。真应变为0.7的加工图表明合金在高温变形时存在2个安全加工区域,即变形温度为300~350℃、应变速率为1~10 s?1的区域和变形温度为380~450℃、应变速率为0.01~0.3 s?1的区域。适合加工的条件是变形温度为350℃,应变速率0.01 s?1。  相似文献   

17.
在MTS810试验机上进行了MX246A合金的热压缩试验,获得了不同变形条件下该合金的真应力-真应变曲线,建立了MX246A合金的热加工图。结果表明,Ni3Al基MX246A合金的流变应力随着变形程度的增加先达到峰值应力,之后逐渐降低,趋于稳态流变。在较高的应变速率变形时容易达到稳态流变,在较低的应变速率时,随着应变量从临界应变逐渐增大,流变应力单调递减,并且随着温度的升高,单调递减的速率逐渐增大。真应变量为0.7的MX246A合金的加工图上存在一个安全加工区,对应的温度在1 220℃附近,应变速率在0.001s-1附近。随着真应变量的增大,功率耗散峰值区域逐渐向高温区移动,功率耗散的微观机制随之由动态回复向γ′相的回溶转变。  相似文献   

18.
关键词:双相不锈钢; 流变曲线; 本构方程; 热加工图  相似文献   

19.
Isothermal hot compression tests on the as-cast high-Cr ultra-super-critical rotor steel with columnar grains were carried out in the temperature range from 1223 to 1523 K and at strain rates from 0.001 to 1 s-1 .The compression direction was parallel to the longitudinal direction of columnar grains.The constitutive equation based on Arrhenius model was presented, and the processing maps based on the dynamic material model were developed, correlating with microstructure observation.The main sof-tening mechanism was dynamic recovery at 1223 K under strain rates from 0.1 to 1 s-1 , whereas it was dynamic recrystallization under other deformation conditions.The constitutive equation modified by strain compensation reasonably predicted the flow stresses.The processing maps and microstructure evolution mechanism schematic indicated that the optimum hot working parameters lay in the zone defined by the temperature range from 1423 to 1473 K and the strain rate range from 0.001 to 1 s-1 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号