首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
针对双馈风力发电机高电压穿越问题,利用Laplace变换对电网电压骤升时电磁暂态过渡过程进行分析,得出定子电流不仅含有直流分量,还包含有工频交流成分,并通过仿真频谱验证了理论分析的正确性。不同于常规研究中只在转子电压方程考虑定子磁链的动态变化,而忽略了其对功率外环的影响,分析了定子磁链动态变化对有功、无功解耦的影响,在此基础上对功率外环进行传统矢量控制策略的改进。此外,考虑并网规范对机组无功电流支撑的要求,控制换流器输出与电网电压骤升幅度相匹配的无功电流,帮助故障电网快速恢复。仿真结果表明,该方案不仅能够保证电网电压骤升时双馈机组不脱网运行,而且也满足并网规范对机组无功电流输出的要求,实现高电压穿越。  相似文献   

2.
新能源发电系统并网逆变器的高电压穿越控制策略   总被引:1,自引:0,他引:1  
电网电压的骤升会带来新能源发电系统并网逆变器(grid-connected inverter,GCI)控制裕度的下降,如若失控则会导致能量由电网倒灌进入逆变器进而引发直流侧过压或过流。为改善电网电压骤升对GCI所造成的暂态冲击,确保其安全并网运行,该文提出一种GCI高电压穿越(high voltage ride-through,HVRT)控制策略。首先分析容量限制条件下GCI的电流控制能力,讨论不同电网电压骤升幅度情况下GCI的可控区。在此基础上,设计基于电网电压和发电侧负载电流信息的直流母线电压参考值自适应调节算法,以确保电网电压骤升期间GCI的可控性。最后,结合感性无功电流控制,给出GCI的HVRT方案。仿真和实验结果验证了GCI控制能力分析的正确性和所提出控制策略的有效性。  相似文献   

3.
采用串联网侧变换器的双馈风电系统高电压穿越控制策略   总被引:1,自引:0,他引:1  
针对采用串联网侧变换器的双馈风电系统电机定子端电压灵活可控的特点,提出了适用于该系统的对称高电压穿越控制策略。该策略通过控制串联网侧变换器,实现电网电压对称骤升时发电机定子电压保持不变,从而抑制定子磁链的暂态直流分量,使得电机转子过电压及过电流得到有效抑制,且可有效减小发电机电磁转矩及功率的波动。在变流器电流容量的约束下,故障期间通过控制转子侧变换器与并联网侧变换器吸收无功功率,可实现该系统对电网的故障暂态无功支持。仿真结果表明,所提控制策略既能保证在电网发生对称骤升故障期间双馈风电系统不脱网运行,又可使该系统为电网电压的恢复提供无功支持。  相似文献   

4.
在分析电网电压不对称骤升时双馈感应发电机暂态特性的基础上,从最大限度吸收电网无功功率角度出发,提出适用于采用串联网侧变换器的双馈风力发电系统的不对称高电压穿越控制策略,并对该系统的可控能力进行分析。所提控制策略在电网电压故障期间,通过控制串联网侧变换器维持定子电压恒定,并实现定子磁链暂态直流分量的抑制。通过控制并联网侧变换器维持直流母线电压恒定,同时利用变流器电流裕量实现对系统总输出有功或无功功率波动的抑制。通过控制机侧变换器实现双馈风电系统的功率解耦控制,并在变流器过流能力有限的约束条件下,最大限度吸收无功功率以实现对故障电网的暂态无功支持。仿真结果表明,所提控制策略既可有效实现双馈风电系统的不对称高电压穿越,同时也可增强所并电网的运行稳定性。  相似文献   

5.
电网侧短时故障给分布式发电(DG)并网可靠性带来挑战,常规的以抑制过电流和通过无功注入支撑并网接入点电压的方式实现故障穿越难以有效解决DG源-荷功率失衡的问题.为此提出一种基于储能型准Z源逆变器(QZSI)有功功率增量控制的故障穿越控制策略,在QZSI直流链引入超级电容器储能及控制,利用超级电容快速放电特性和QZSI较强的抗负荷冲击能力,快速调节DG并网功率增量以补偿网侧故障潮流,有效改善故障暂态时DG源-荷功率平衡,增强了DG适应短时故障负荷潮流的能力和对网侧电压的支撑能力.仿真和实验结果验证了所提故障穿越控制策略的有效性.  相似文献   

6.
为了解决光伏发电在电网电压跌落过程中,逆变器两侧功率不平衡出现过电流和过电压的问题,设计了一种定功率跟踪控制的光伏并网低电压穿越策略。通过定功率跟踪控制对光伏阵列输出功率进行调节,根据电压跌落深度,合理给定功率参考值,控制光伏阵列的功率输出,实现交、直流侧功率的快速平衡,限制直流母线电压的增长。通过逆变器无功补偿控制,不仅能限制并网电流在安全范围内,还能够根据跌落深度提供无功支撑,有效地利用了逆变器自身的无功调节能力。结果表明,该策略能够抑制过电压和过电流,使系统具备一定的低电压穿越能力。最后,在Simlink中搭建仿真模型,通过与传统控制策略对比,验证了该控制策略的有效性和实用性。  相似文献   

7.
随着风电装机容量不断扩大对风电场的低电压穿越能力提出了更为严格的要求,而传统的笼型异步发电机组本身并不具备低电压穿越能力。本文针对全功率变流器的笼型异步风电机组,在深入研究该机组的运行特性和控制策略的基础上,分析了电网电压跌落过程中引起全功率变流器直流侧电压波动的原因,提出了一种基于功率跟踪优化和网侧无功优先输出的控制策略。在电网电压跌落时,该控制策略根据网侧变流器的功率变化切换功率跟踪曲线以减少发电机的有功输出,抑制直流侧过电压。同时,根据国网公司并网技术规范要求,电网无功电流以及电网电压的跌落深度时迅速向电网提供无功,提升电网电压。仿真结果表明该控制策略可以有效抑制直流侧电压的波动,提高了笼型异步风电机组的低电压穿越能力。  相似文献   

8.
文章讨论了电网电压骤升时双馈风电机组网侧和转子侧变流器有功、无功功率的分配原则,给出有功、无功电流的极限表达式,提出一种能有效提供动态无功支持的高电压穿越(high voltage ride-through,HVRT)实现方案。在机组端电压骤升至1.1倍标称值以上时,该方案一方面控制网侧变流器输出与电压骤升幅度相匹配的无功电流,实现母线电压的稳定;另一方面通过优化转子侧变流器有功、无功电流设定,使双馈感应发电机工作在无功支持模式,优先向故障电网输出一定的感性无功功率。仿真和基于东方风电6 MW试验台实验结果表明,该控制方案不仅能确保电网电压骤升期间双馈风电机组的不脱网运行,还能对故障电网提供一定的动态无功支撑,协助电网电压快速恢复,利于其它并网负载的安全运行。  相似文献   

9.
风电、光伏等新能源通常难以满足电压骤升时故障穿越性能要求,即不具备高电压穿越(high voltage ride through,HVRT)能力。本文采用由蓄电池与超级电容组成的混合储能系统(hybrid energy storage system,HESS)来提高新能源HVRT能力。在蓄电池换流器控制系统中采用无功优先控制策略,输出无功功率平抑母线电压波动。在超级电容换流器控制系统中采用功率前馈控制策略,利用其快速充放电特性,实现新能源HVRT过程中快速吸收直流侧不平衡能量,并研究蓄电池与超级电容在HVRT过程中协调控制策略。针对传统新能源储能HVRT以牺牲有功为代价提高无功输出问题,本文提出一种根据HVRT电压升高幅度估算无功电流参考值方法,在保证有功输出不变前提下提高新能源HVRT能力。MATLAB/Simulink仿真结果表明,本文方案可以使含有HESS的新能源系统具备HVRT能力。  相似文献   

10.
吕思卓  郑超  姜静雅 《电网技术》2024,(3):1281-1291
在新型电力系统构建中,构网型光伏将发挥巨大作用。但受限于电力电子器件过流能力,目前针对构网型光伏的故障穿越控制策略还需进一步完善。综合考虑逆变器稳态和暂态过流抑制,提出了一种基于功率指令切换和虚拟阻抗的双级式构网型光伏发电故障穿越控制策略,该策略计及光伏直流侧动态响应,能够实现满足电流限幅约束的前提下向并网电压提供无功支撑,同时保持故障期间构网型光伏对系统惯性的支撑特性,提升大扰动下光伏换流器暂态功角稳定性。仿真结果表明,在电网发生严重电压跌落的情况下,所提控制策略可在保持逆变器直流侧电压稳定的同时实现故障穿越功能。  相似文献   

11.
低/高电压故障穿越问题严重影响永磁直驱风电机组的安全稳定运行。为提高机组低/高电压故障穿越能力,基于常规控制方案提出改进优化策略,分别对机组常态及故障暂态过程采取多模式运行方案。机侧稳态过程实现最大功率跟踪,故障暂态时由输入输出功率差值调整转速值,改变转子转速,抑制机侧有功输入值。直流侧依据电压骤升程度,提出双模式卸荷电阻投切方案,稳定母线电压值,平稳电压波动程度。网侧提出无功补偿方案并接静态无功补偿器(STATCOM)为电网提供最大化无功支撑。通过Matlab/Simulink平台搭建仿真模型,验证所提方案的有效性与合理性。  相似文献   

12.
传统高电压穿越(high voltage ride through, HVRT)过程的实现主要是针对转子过电流或直流母线过电压的单一场景设计控制策略,容易产生控制盲区。为此,提出一种基于转子电流反馈与功率不平衡响应的高电压穿越控制策略。为抑制转子过电流,在检测定子电压和电流的基础上,通过分解定子磁链获得转子电流直流分量参考值,将转子回路实际电流作为反馈量抵消转子回路中的直流电流分量。另外,考虑到直流母线过电压容易导致高电压穿越失败,采用功率平衡关系式推导稳定直流电压所需的控制电流参考值。若控制电流超过变流器允许工作电流范围,则考虑将输出电流限值作为控制电流参考值以最大限度利用变流器控制能力,降低直流母线过电压。仿真结果表明:所提出的控制策略能在降低过电流以及直流母线过电压的同时确保良好的动态响应性能。  相似文献   

13.
针对采用传统正序无功功率注入控制策略的逆变型分布式电源IIDG(inverter-interfaced distributed gener?ation)在电网发生不对称故障时无法有效支撑IIDG公共耦合点PCC(point of common coupling)电压的问题,提出一种改进功率控制策略.首先以预设相电压幅值...  相似文献   

14.
针对高压直流输电系统受端换流站发生接地故障时暂态电压失稳问题,提出一种综合故障检测与有功无功输出的储能型链式静止同步补偿器(static synchronous compensator, STATCOM)控制策略。储能型STATCOM具有功率四象限运行能力,通过协调装置输出的有功、无功功率可以优化电压支撑效果。首先,改进了故障检测方法,采用双重检测快速判断故障起止时刻。其次,在故障期间控制储能型STATCOM输出一定量的有功功率,可以有效抑制受端连续换相失败,抬升交流电压最低值。同时,对无功功率进行控制切换,避免故障清除后无功回撤不及时导致的受端暂态过电压问题。在PSCAD/EMTDC仿真平台的CIGRE标准系统中对所提电压支撑控制策略与储能型STATCOM常规控制进行对比。结果表明,在不同故障场景中,所提控制策略均能达到更好地电压支撑的效果。  相似文献   

15.
在双馈感应发电机(DFIG)高电压穿越(HVRT)问题中,电压骤升引起的暂态过电流不足以触发撬棒保护动作,致使HVRT下的定转子短路电流特性比低电压穿越(LVRT)更复杂。推导了计及电磁暂态过渡过程和转子侧换流器(RSC)调控共同作用影响下的定转子电流表达式。在此基础上考虑并网规范要求的DFIG无功电流支撑,控制RSC和网侧换流器(GSC)输出与骤升幅度相对应的分量,使DFIG工作于无功支持状态。仿真结果表明,定转子电流表达式准确描述了HVRT期间的故障电流,所得结果更具一般性,且对故障电气量的计算具有重要意义;改进无功电流配置实现了DFIG的HVRT。研究结果对掌握DFIG的动态过程具有一定的参考价值。  相似文献   

16.
高电压故障给新能源机组和电网安全稳定运行带来的危害日趋严重。本文首先介绍当前各国高电压穿越(HVRT)的技术标准,分析了电网中高电压故障产生的典型原因,根据原因和故障程度的不同将高电压故障分为两类。其次以永磁直驱风电机组(PMSG)为例,分析了PMSG在高电压故障期间的暂态过渡过程,并设计了高电压穿越控制策略。分析表明,典型参数设计下,利用该策略,PMSG机组难以穿越由直流输电系统闭锁等导致的深度高电压故障。进一步,提出了新能源机组与无功补偿装置的协同控制策略,以实现新能源机组在深度高电压故障下的穿越。最后基于PSCAD/EMTDC电磁暂态仿真验证了本文分析结果和所提方法的有效性。  相似文献   

17.
近些年来,国内外学者对风电机组低电压穿越进行了研究,但对于并网风电机组高电压穿越研究较少。为提高直驱风电机组高电压穿越能力,以2.5MW直驱风电机组为研究对象。本文首先对比分析了国外的风电机组高电压穿越标准,然后提出对网侧变流器采用稳态时单位功率因数控制、暂态时提供无功的控制策略。最后,在Matlab/Simulink中分别建立了斩波电路和超级电容储能系统两种直流侧卸荷电路模型,在相同工况下,仿真分析了两种卸荷电路对机组暂态特性的影响。研究结果表明:两种卸荷方式均能实现直驱风电机组高电压穿越,相比斩波电路,超级电容储能系统不仅能够提升风电机组的高电压穿越能力,而且能够改善机组故障穿越结束后机组稳定运行特性。  相似文献   

18.
针对光伏逆变器在电网发生不平衡电压暂降时的输出电流过大问题,提出了一种考虑电流峰值、输出有功/无功功率波动、负序电流的多目标光伏逆变器低电压穿越控制策略.首先对多目标电流参考值进行推导,并在此基础上推导含有多目标参数的峰值电流表达式;然后,在多目标参数的确定基础上,运用多目标人工蜂群算法与最大满意度法利用已得到的峰值电...  相似文献   

19.
基于虚拟同步发电机的模块化多电平变流器(MMC)控制策略参数设计复杂,响应速度缓慢。提出一种适用于弱交流系统的基于MMC的柔性高压直流输电(MMC-HVDC)模型预测控制策略,采用电压预测滚动优化和参考轨迹柔化技术,提高模型预测控制精度,降低器件开关频率并改善系统暂态响应性能。同时,通过在外环控制引入有功调频、无功调压控制,在内环控制引入直接电压预测控制,使得MMC能够有效参与受端电网频率调节,并保持有功、无功解耦控制。最后,通过MATLAB/Simulink平台进行仿真验证,仿真结果表明所提控制策略可以有效改善输出电能质量,降低开关频率,减小开关损耗,提高暂态响应速度,为弱交流系统提供更好的频率支撑特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号