首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
不同含量稀土Ce的H13钢在不同温度淬火30 min后空冷,不同温度二次回火2 h后空冷,进行组织观察和硬度测试。研究表明,淬火温度达到1040℃,基体组织和晶界处的碳化物减少,板条马氏体更清晰,回火温度在580℃时,显微组织为回火马氏体+回火托氏体,回火温度超过600℃,碳化物聚集长大,故最佳热处理工艺为1040℃淬火+580℃二次回火;稀土Ce含量为0.026%时,试验钢的晶粒最为细小,组织最为均匀,硬度最高,淬火硬度为650.6 HV30,回火硬度为391.4 HV30。  相似文献   

2.
采用脉冲电流对退火态和回火态H13热作模具钢进行了改性处理,研究热作模具钢组织、物相、力学性能和热疲劳性能的变化。结果表明,回火态H13钢的强度和硬度高于退火态,回火+脉冲电流处理态H13钢的强度和硬度也高于退火+脉冲电流处理态的,退火态H13钢的断后伸长率要高于回火态H13钢的;经过脉冲电流处理后,H13钢的疲劳裂纹数量减少;随疲劳循环次数增加,H13钢的最长疲劳裂纹长度逐渐增加;在相同的疲劳循环次数下,不同处理状态H13热作模具钢的最长疲劳裂纹长度由长至短依次为退火态、退火+脉冲电流态、回火态以及回火+脉冲电流态;脉冲电流处理可以提高H13热作模具钢的抗热疲劳能力。  相似文献   

3.
以不同厂家生产的两炉18CrNiMo7-6齿轮钢(标记为IQ-T-1、IQ-T-2)为研究对象,分析了试验钢经亚温淬火-回火(Intercritical quenching and tempering,IQ-T)处理后的显微组织对其力学性能、旋转弯曲疲劳性能和疲劳裂纹扩展行为的影响。结果表明:IQ-T-1试验钢的强度和疲劳强度较IQ-T-2试验钢分别提高了97 MPa和96 MPa,具有更好的力学性能和疲劳性能。IQ-T-1试验钢组织为细小铁素体+小块马氏体+回火马氏体,而IQ-T-2试验钢组织为粗大铁素体+回火马氏体。IQ-T-1试验钢中细小铁素体+小块马氏体使裂纹分枝、裂纹闭合和应力屏蔽现象均更为显著,对裂纹萌生和扩展的阻碍作用更大。  相似文献   

4.
采用光学显微镜、扫描电镜和热疲劳试验等研究了常规淬火和等温淬火两种不同工艺对H13钢显微组织和热疲劳性能的影响.结果表明:等温淬火处理后H13钢的显微组织为马氏体+下贝氏体(M/B下).与常规淬火相比,具有M/B下复相组织的试验钢的硬度有所降低,冲击韧性有所提高.热疲劳裂纹分析表明,经等温淬火处理后试样的热疲劳裂纹在长度和密度上均小于常规淬火处理的试样,表明M/B下复相组织有益于提高H13钢的热疲劳性能.  相似文献   

5.
在自约束型热疲劳试验机上对LGJW20钢结硬质合金进行了热疲劳试验,借助金相分析、扫描电镜(SEM)、能谱分析(EDS)等方法观察了合金的显微组织,重点研究了LGJW20的热疲劳性能表现,分析了热处理工艺对合金热疲劳性能的影响。结果表明:合金中硬质相主要由鱼骨状共晶碳化物、网状二次碳化物及大块状碳化物组成;合金的热疲劳裂纹在缺口根部萌生,以一条主裂纹形式沿碳化物扩展;合适的热处理工艺能提高基体的高温屈服强度,改善合金的组织结构,提高了合金的热疲劳性能。LGJW20经过980℃淬火、200℃回火处理后热疲劳性能最佳。  相似文献   

6.
H13钢热疲劳性能研究   总被引:1,自引:0,他引:1  
以盐浴法为手段,对H13钢进行了热疲劳实验,探讨了淬火温度、回火温度、表面处理对其热疲劳失效裂纹的影响并确定了合理的热处理工艺。实验得出:试样热疲劳循环次数在400个周期时,裂纹形成后扩展迅速,裂纹平均生长速度约为2.51×10-3mm/周,而采用1 020℃淬火、640℃回火热处理工艺,与裂纹平均生长速度相比,热疲劳裂纹生长速度减缓了0.45×10-3mm/周,表面渗氮的试样裂纹源可推迟50个热疲劳循环周期。  相似文献   

7.
回火温度对4Cr5MoSiV1钢和8407钢热疲劳性能的影响   总被引:5,自引:1,他引:4  
采用自约束热疲劳试验方法,研究对比了不同回火温度对4Cr5MoSiV1、8407钢热疲劳性能的影响。观察分析了热疲劳裂纹形貌,采用热疲劳损伤因子定量地研究了两种钢的热疲劳过程,结果表明,两种钢的热疲劳裂纹萌生发生在冷热疲劳循环次数为100-200次之间,在1600次冷热循环前,二者的热疲劳损伤程度无明显的差别,在1600次冷热循环后,8407钢的热疲劳损伤程度低于4Cr5MoSiV1钢。在较低的回火温度条件下,8407钢的热疲劳抗力稍优于4Cr5MoSiV1钢。而在高温回火时8407钢的热疲劳抗力高于4Cr5MoSiVl钢。分析了这两种钢的热疲劳机制,指出决定材料热疲劳裂纹抗力的是钢的热稳定性和钢的强度或硬度。  相似文献   

8.
以贝氏体钢为研究对象,设计了4种热处理工艺,研究了不同热处理工艺下试验钢的显微组织及疲劳裂纹扩展速率。结果表明,热轧态试验钢的微观组织以粒状贝氏体为主,其上分布有少量的板条贝氏体、马氏体和粗大块状M/A岛,残留奥氏体的体积分数为16.2%,但稳定性较差,裂纹能够直接穿过粗大的块状M/A岛继续扩展,疲劳裂纹扩展速率最快。经900 ℃奥氏体化+空冷后,显微组织以板条贝氏体和马氏体为主,M/A岛仍为粗大的块状,残留奥氏体含量减少至12.3%,疲劳裂纹扩展速率略有降低。经900 ℃奥氏体化+380 ℃盐浴等温30 min +空冷后,显微组织以细密、有序的板条贝氏体为主,残留奥氏体含量减少至10.2%,以薄膜状伴生在板条贝氏体间,板条状贝氏体及板条间的残留奥氏体薄膜会使裂纹端钝化、分叉、偏折,阻碍裂纹扩展的能力增强;经350 ℃回火240 min后,显微组织以马氏体和板条贝氏体为主,残留奥氏体含量比热轧态略微降低,为14.9%;而经450 ℃回火240 min后,显微组织以板条状贝氏体为主,其上分布有少量的马氏体,残留奥氏体体积分数减少至8.6%,也以薄膜状伴生在贝氏体板条间,同时有大量的碳化物析出,裂纹扩展速率最慢。  相似文献   

9.
对比研究了回火温度对热作模具用H13和Dievar钢热疲劳性能的影响。H13和Dievar钢经过520、580和640 ℃回火处理后,采用自主搭建的Uddeholm自约束疲劳试验装置分别对试样进行1000次热疲劳试验,并用热疲劳损伤因子对热疲劳损伤过程进行定量描述。结果表明,在相同回火温度下,Dievar钢具有较低的硬度和较高的冲击性能,抗疲劳性能优于H13钢。H13和Dievar钢在580 ℃ 回火处理后,碳化物尺寸分别约为10.1 μm和6.3 μm,H13钢碳化物含量高且尺寸大,导致韧性和抗热疲劳性能降低。  相似文献   

10.
对日本常用的热作模具钢SKD61(相当于H13钢)进行气体软氮化处理,研究氮化处理对热作模具钢微观组织、热熔损性能及热疲劳性能的影响。试验选用传统型A及低Si高Mo含量的改良型B热作模具钢为研究材料,进行热处理研究。结果表明:两种热作模具钢经气淬及回火处理后,组织均为回火马氏体。氮化处理试片表面主要为Fe_3N与Fe_4N相,且在525℃回火处理后有二次硬化现象。改良型钢种比传统型更能抗铝熔损,且经580℃软氮化处理80 min后,能有效降低熔损率。B钢的抗疲劳性优于A钢,但软氮化处理并不能有效提升耐热疲劳性。  相似文献   

11.
对不同稀土Ce含量的4Cr5MoSiV1试验钢经热加工处理后的显微组织进行了观察和分析,研究Ce含量对其显微组织的影响。结果表明,稀土Ce的加入,使4Cr5MoSiV1钢铸态、锻态、正火和球化退火态的组织得到改善,晶粒细化、夹杂物变性、成分偏析减轻、未溶碳化物消除。但当稀土Ce含量超过0.026%时,上述改善作用逐渐减弱,甚至起到恶化的效果。  相似文献   

12.
采用OM、SEM、TEM、XRD、显微硬度计以及热疲劳试验机等方法研究了深冷处理对H13型热作模具钢的组织和性能的影响,并与常规淬回火工艺进行了对比分析。结果表明,在常规的淬回火工艺的基础上增加深冷处理有利于细化试验钢的晶粒组织并促进残留奥氏体向马氏体转变。此外,在深冷处理的条件下马氏体晶格由于在极低温易发生收缩而促使碳原子在位错等缺陷处偏聚,回火过程中以碳化物的形式析出。这些析出的大量细小弥散分布的碳化物可钉扎位错,对热循环引起的应力集中起到一定的缓解作用,减缓降低热疲劳裂纹扩展速率。且深冷处理后细小弥散分布的碳化物析出降低了H13钢热疲劳过程中碳化物长大速率,减少了热疲劳裂纹的数量,从而提高热疲劳性能。  相似文献   

13.
采用不同淬火温度和回火温度对Cr2Ni4Mo V钢转子进行了热处理,并进行了耐磨损性能和热疲劳性能的测试与分析。结果表明:在试验条件下,随淬火温度和回火温度的提高,转子的耐磨损性能和热疲劳性能均先提高后下降;当淬火温度为860℃、回火温度为600℃时,转子的磨损体积最小,主裂纹深度和主裂纹宽度最小,耐磨损性能和热疲劳性能最佳。Cr2Ni4Mo V钢转子的热处理工艺参数优选为:淬火温度860℃、回火温度600℃。  相似文献   

14.
张蒙  吴光亮 《金属热处理》2023,(10):157-162
对NM500耐磨钢进行940℃淬火+两相区淬火+回火(QLT)热处理,研究了两相区淬火温度(820~880℃)和回火温度(200~600℃)对试验钢显微组织和力学性能的影响。结果表明,在两相区淬火温度从820℃升至880℃的过程中,试验钢为马氏体和铁素体双相组织,且铁素体含量逐渐降低,马氏体含量增多,试验钢的强度和硬度提高,-40℃冲击吸收能量从67 J降低至33 J。在870℃两相区淬火,200~600℃范围内回火时,随回火温度的升高,板条马氏体和残留奥氏体逐渐分解,碳化物形态和分布发生变化;试验钢抗拉强度和硬度逐渐降低,低温冲击性能先降低后升高,试验钢达到良好强韧性匹配的回火温度区间为200~250℃。  相似文献   

15.
徐文芳  张朋彦  杨鹏 《金属热处理》2020,45(11):187-191
对在线淬火型微合金高强结构钢在400~600 ℃范围内进行回火40 min处理,以研究不同回火温度对试验钢显微组织和力学性能的影响。通过光学显微镜、扫描电镜等进行组织观察分析,同时测量试验钢回火后的强度、硬度及-40 ℃冲击吸收能量等进行力学性能分析。试验结果表明:随着回火温度的升高,试验钢强度及硬度整体呈下降趋势,冲击性能整体上升,并在450~500 ℃出现回火脆性区。同时随着回火温度升高,试验钢组织中马氏体逐渐宽化减少,铁素体含量增多。450 ℃回火时,试验钢的组织为回火托氏体,此时其屈服强度和硬度分别为840 MPa和304 HV3,断后伸长率为14.4%,-40 ℃冲击吸收能量为129 J,达到良好综合力学性能。  相似文献   

16.
回火温度对M50钢组织及摩擦磨损性能影响   总被引:1,自引:0,他引:1  
采用X射线衍射仪、扫描电镜、洛氏硬度计、摩擦磨损试验机等研究了不同温度(160、300和540℃)回火处理对淬火态M50钢的微观组织、硬度及摩擦磨损性能的影响.结果 表明:经1090℃淬火后M50钢显微组织由马氏体、碳化物及残留奥氏体组成,硬度为64.5 HRC,残留奥氏体含量为18%;回火处理使M50钢组织中马氏体转变为回火马氏体,随着回火温度的升高,试验钢硬度先降低再升高,其中,300℃回火时试验钢的硬度较低,540℃回火出现二次硬化现象,硬度值较大,残留奥氏体含量较低约4%.摩擦磨损试验结果表明:540℃回火处理可以有效降低试验钢的摩擦系数和磨损率,其磨损机制为轻微磨粒磨损伴随粘着磨损.  相似文献   

17.
采用755℃×4 h退火后炉冷至300℃空冷+850℃×20 min油淬+500℃×5 h第一次回火和不同的第二次回火工艺对机械用Cr Mo合金钢进行了热处理,并对其进行了-40℃低温冲击试验和1000次25~500℃冷热循环试验。结果表明,随第二次回火温度从350℃增大至550℃或回火时间从1 h延长到6 h,Cr Mo合金钢的低温冲击吸收功先增大后减小,热疲劳裂纹级别数值表现为先减小后增大,钢的低温冲击性能和热疲劳性能先提高后降低。最佳第二次回火工艺为:475℃×5 h。  相似文献   

18.
采用自约束热疲劳试验方法,结合变倍体视显微镜、高分辨扫描电镜及热疲劳损伤因子计算机辅助分析软件对比研究了氮含量对4Cr5Mo2V热作模具钢热疲劳裂纹萌生与扩展、材料抗回火软化能力及热疲劳损伤程度的影响。结果表明:随着热疲劳循环次数的增加,与氮质量分数为0.0044%和0.0080%的4Cr5Mo2V钢试样相比,氮质量分数为0.0105%的试样的热疲劳裂纹更早萌生;3000次循环后,该试样的表面硬度下降幅度最大,抗回火软化能力最弱;且热疲劳损伤因子最大,热疲劳性能最差。因此,减少氮含量有利于提高4Cr5Mo2V热作模具钢的热疲劳性能,大大延长热作模具使用寿命。  相似文献   

19.
对一种新型耐磨铸钢进行了不同温度的淬火和回火处理。淬火温度分别为850、880和910℃,回火温度分别为200、250和300℃。利用金相显微镜(OM)和扫描电子显微镜(SEM)观察并分析了试验钢热处理后的显微组织,同时测试了试验钢的洛氏硬度、显微硬度、耐磨性能和拉伸性能。结果表明:经不同温度淬火后,试验钢的组织均为板条马氏体;随着淬火温度的升高,试验钢的硬度先升高后降低,880℃淬火的钢硬度最高。经880℃淬火、不同温度回火的试验钢的组织均为回火马氏体;随着回火温度的升高,试验钢的硬度先增加后减小,抗拉强度逐渐升高,磨损量先减小后增加。经880℃淬火、250℃回火的试验钢的综合力学性能最佳。  相似文献   

20.
1500 MPa级贝氏体/马氏体复相高强钢的疲劳断裂特性   总被引:2,自引:0,他引:2  
对一种C—Si—Mn—Cr合金钢,通过900℃奥氏体化20min,空冷及280与370℃回火2h,获得抗拉强度为1500MPa的新型无碳化物贝氏体/马氏体(B/M)复相组织高强钢.采用C—T试样进行疲劳实验,测定了疲劳裂纹扩展速率(da/dN)及疲劳门槛值(△Kth),利用扫描电镜观测了疲劳裂纹在疲劳循环过程中的扩展路径,分析断口形貌与显微组织间的关系.结果表明,这种无碳化物B/M复相高强钢具有较高的△Kth值,并且能明显地降低da/dN,其原因在于B/M复相组织高强钢独特的精细组织结构及疲劳裂纹尖端的闭合抗力的提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号