首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
研究了真空环境中TA32钛合金板材在温度950℃、应变速率5.32×10^-4~2.08×10^-2 s^-1条件下的超塑性变形行为。结果表明,在不同应变速率条件下,合金的流变应力曲线特征和显微组织演变显著不同。在应变速率较低(5.32×10^-4~3.33×10^-3 s^-1)条件下,拉伸真应力-真应变曲线呈传统超塑变形的稳态流动特征,变形后的合金中初生α相晶粒尺寸较大;在高应变速率(8.31×10^-3 s^-1~2.08×10^-2 s^-1)条件下,拉伸真应力-真应变曲线中流变应力增大到峰值后快速单调递减直至试样断裂,合金变形过程中初生α相发生动态再结晶,晶粒尺寸较低应变速率条件下显著细化。950℃时,TA32钛合金板材均具有超塑性变形能力,超塑性延伸率在145%~519%之间;当应变速率为5.32×10^-4 s^-1时,具有最佳的超塑性,拉伸延伸率可达519%。断裂区形貌分析发现,TA32钛合金板材的超塑性断裂模式为空洞聚集-连接-长大型断裂。  相似文献   

2.
对不同温度下退火处理后的细晶TC4合金板材进行超塑性拉伸变形,研究该合金在750~850℃,应变速率为3×10-4~1×10-3 s-1条件下的超塑性拉伸变形行为,分析晶粒尺寸、变形温度和β相含量对合金性能的影响。结果表明:退火后的(α+β)型细晶Ti-6Al-4V合金表现出良好的超塑性,并且晶粒越细,最佳超塑性变形温度越低。晶粒直径为2.5μm、β相含量(体积分数)为9.6%的TC4合金在温度为800℃、应变速率为1×10-3 s-1的变形条件下,伸长率最大,达到862%。不同晶粒度合金的应变速率敏感系数m均随变形温度升高先上升后下降,最高达0.61。β晶粒处于α晶粒三叉晶界处,升温或拉伸变形时聚集并沿α晶界长大,形成细长的β晶粒并逐渐变粗大,因此在900℃以上高温下合金的超塑性变形能力降低。  相似文献   

3.
研究了TA15钛合金超塑性变形后显微组织的演变及变形条件对超塑性变形行为的影响。结果表明:在变形温度为850~950℃、应变速率为1×10-4~1×10-3s-1超塑性拉伸时,TA15钛合金表现出良好的超塑性变形性能,且在900℃,5.5×10-4s-1变形条件下,延伸率最大为803.3%。在应变速率不变的条件下,随着变形温度的升高,α相晶粒尺寸增大,β相含量增加,晶粒仍保持细小、等轴状态。在变形温度一定时,随着应变速率的降低,α相晶粒尺寸增大,β相含量增加。同时变形程度对显微组织有显著影响,拉伸后不同部位的显微组织均有一定程度的粗化,变形程度越大,晶粒粗化的越明显,并伴有α相到β相的转变。变形过程中,加工硬化与变形软化相互竞争,表现为传统超塑变形的稳态流动特征。  相似文献   

4.
研究了真空环境中TA32钛合金在950℃,初始变形速率在5.32×10-4~2.08×10-2s-1条件下的超塑性变形行为。结果表明,不同应变速率条件下,板材的流变应力曲线特征和显微组织演变呈现显著不同。在应变速率较低条件下(5.32×10-4 ~3.33×10-3s-1),拉伸真应力-应变曲线呈传统超塑变形的稳态流动特征,变形后的板材中初生α相晶粒尺寸较大;在高应变速率(8.31×10-3 s-1~2.08×10-2 s-1)条件下,拉伸真应力-应变曲线中流变应力增大到峰值后快速单调递减直到断裂,变形后的板材中初生α相发生动态再结晶,晶粒尺寸与低应变速率条件拉伸的板材相比显著细化。在950℃下,TA32钛合金板材均具有超塑性变形能力,超塑性延伸率在145%~519%之间,当应变速率为5.32×10-4s-1时,板材具有最佳的超塑性性能,拉伸延伸率可达519%。断裂区分析发现,TA32钛合金板材的超塑性断裂模式为空洞聚集-连接-长大型断裂。  相似文献   

5.
采用Gleeble-3500热模拟试验机进行热压缩试验,研究了Cu-3.6Ni-1.0Si合金在变形温度为500~950℃、变形速率为0.01~10s。状态下的热塑性变形行为。根据应力.应变数据,构建了cu.3.6Ni-1.0Si合金热塑性变形过程中流变应力与变形温度、变形速率等加工参数之间的本构关系方程。经过参数拟合与优化,得到Cu-3.6Ni-1.0Si合金在650~950℃之间、热变形过程的应力.应变速率关系方程。试验结果及分析表明,Cu-3.6Ni-1.0Si合金加热保温及开轧温度应以950℃为上限,终轧温度以高于7000C为宜,不能低于650℃,热轧加工变形速率范围在0.1~10s-1之间。  相似文献   

6.
ZnAl_(5-0.03)合金超塑性变形过程中晶粒的热长大是次要的,而变形量能有效地促进晶粒长大,在大变形量的条件下还伴随着呈现孔洞。提高应变速率使晶粒细化,组织微粒化,在高应变速率下呈现孔洞,继续提高应变速率会使孔洞发展。本文还讨论了变形过程中显微组织变化规律与超塑性力学行为间的关系。  相似文献   

7.
文章通过电子背散射衍射(EBSD)、宏观织构(Texture)、扫描电镜(SEM)、透射电子显微镜(TEM)等手段研究了一种热挤压Al-Zn-Mg-Cu-Zr棒材的超塑性行为和组织演变。试验结果表明,合金在470~510℃的温度范围和5×10~(-4)~5×10~(-3) s~(-1)的应变速率范围内可以实现合金的超塑性(伸长率≥200%)。在490℃和5×10~(-3) s~(-1)变形条件下,合金的动态软化机制以动态回复为主,但动态软化过程不够充分,随着变形程度的增加,HAGBs占比减小,形变织构强度增加。同时由于Al_3Zr颗粒的存在,可以有效的钉扎晶界和位错,抑制热变形过程中再结晶的发生。此外,通过分析超塑性拉伸数据可知,Al-Zn-Mg-Cu-Zr合金的平均应变速率敏感性指数和平均变形激活能分别为0.2和187.7 kJ/mol。因此,主要的超塑性变形机制是晶格扩散协调的位错攀移。  相似文献   

8.
采用Gleeble-3800型热模拟试验机对熔铸态和锻态TiBw/TA15复合材料进行高温压缩变形试验,研究不同状态TiBw/TA15复合材料在变形量70%、变形温度900~1150℃、应变速率0.01~10 s-1条件下的热变形行为,建立热加工图,并分析该复合材料在热变形过程中的组织性能演变规律。结果表明,熔铸态TiBw/TA15复合材料的热加工工艺窗口为温度900~1150℃,应变速率2.72~10 s-1;温度1000~1100℃,应变速率0.01~0.03 s-1;温度1075~1130℃,应变速率0.01~0.13 s-1。锻态TiBw/TA15复合材料的热加工工艺窗口为温度900~975℃,应变速率0.37~10 s-1;温度960~1025℃,应变速率0.01~0.37 s-1;温度1025~1150℃,应变速率0.01~10 s-1。通过对比发现,锻态TiBw/TA15复合材料的热加工工艺窗口宽,热变形加工性能优于熔铸...  相似文献   

9.
研究连铸镁合金AZ31单向拉伸行为.结果表明在300~450℃,应变速率ε低于1.0×10-3 s-1的情况下,镁合金ZA31开始表现出超塑性.在400℃,应变速率ε为4.25×10-4 s-1时,延伸率达到了200%,应变速率敏感性指数m为0.41.用光学显微镜观察了变形前后的拉伸式样的微观组织,表明试样的初始晶粒尺寸约为20μm,在变形之后颈缩区域的晶粒长大现象不是很明显,晶粒沿着变形方向有所伸长,但晶粒形状基本保持为等轴状.  相似文献   

10.
TB2钛合金热压缩变形流变应力   总被引:2,自引:0,他引:2  
在Gleeble-1500D热/力模拟试验机上,采用高温等温压缩试验,对TB2钛合金在高温压缩变形中流变应力行为进行了研究;应变速率为0.01-10 s^-1,变形温度为600-1200℃。结果表明:应变速率和变形温度的变化显著地影响合金流变应力的大小,流变应力随变形温度的升高而降低,随应变速率的提高而增大;可用Zener-Hollomon参数的双曲正弦函数形式来描述合金的流变应力行为。  相似文献   

11.
研究了不同退火制度对TA19钛合金大规格棒材组织和性能的影响。结果表明:TA19钛合金棒材组织随退火温度的升高逐渐由等轴组织转变为双态组织,经(915~940)℃×1h/AC+550℃×8h/AC双重退火处理后获得等轴组织,经(965~990)℃X1h/AC+550℃X8h/AC双重退火后获得双态组织。TA19钛合金棒材的较佳热处理温度为(965~990)℃×1h/AC+550℃×8h/AC,经该制度热处理后棒材的室温拉伸性能优良。  相似文献   

12.
钛及钛合金热氧化行为研究   总被引:2,自引:0,他引:2  
对TA2纯钛和TA18钛合金试样在500~850℃温度范围内进行热氧化处理,采用静态增重法研究氧化速率,并采用XRD分析表层氧化物物相,探讨合金元素对热氧化动力学的影响机理。结果表明,TA2纯钛和TA18钛合金氧化增重都随温度提高而增大,在相同的热氧化温度和时间下,TA18钛合金的单位面积氧化增重曲线比TA2纯钛的平缓,增重比TA2纯钛慢;TA18钛合金的抛物线速率常数比TA2纯钛小,即TAl8钛合金的抗氧化性比TA2纯钛更好。TA2纯钛在600℃和700℃氧化的抛物线速率常数分别为1.24774×10、6.75902×10-2mg2·cm-4·h-1;TA18钛合金在600℃和700℃氧化的抛物线速率常数分别为7.853×10、3.66128×10-2mg2·cm-4·h-1。TA18钛合金抗氧化性比TA2纯钛更好的原因是:TA18钛合金氧化层由TiO2和A12O3组成,TA2纯钛氧化层完全由TiO2组成,A12O3比TiO2更致密,具有更好的阻挡氧向内层渗透的作用。  相似文献   

13.
通过正向温挤压获得了细晶微观组织的AZ31B镁合金。研究了在310~460℃范围内,应变速率1×10-3~1×100/s下的超塑性流变行为。结果表明,在415℃、1×10-3/s的条件下AZ31B镁合金具有良好的超塑性,最大延伸率可达380%。应变速率敏感指数达到0.47。通过光学显微镜和扫描电镜(SEM)分别观察了AZ31B镁合金在超塑变形过程中的微观组织演变和断口形貌。晶界滑移机制为AZ31B超塑变形的主要机制。  相似文献   

14.
采用先进的热力模拟技术对高温合金NiCr22Mo9Nb合金进行热压缩试验,系统研究了合金在900~1100℃,0.01~5.00 s-1变形条件下的热塑性行为。根据热压缩实验数据,给出不同变形参数下该合金的流变应力曲线。考虑绝热温升效应对流变应力曲线的影响,通过外推法对高应变速率曲线进行绝热温升修正,基于修正后的流变应力曲线构建该合金Arrhenius型本构模型。根据动态材料模型推导该合金在不同应变下的加工图,并分析不同变形参数下该合金的变形组织演化规律。结果表明,该合金的流变应力曲线呈现动态再结晶软化特征;在高应变速率5.00 s-1下发生明显的绝热温升现象,并且随着变形温度的升高绝热温升效应减弱;该合金在900~1100℃时的热变形激活能为485.31k J·mol-1;结合该合金的热加工图和不同区域变形组织特征,合金的完全再结晶区域为变形温度T=1050~1100℃、应变速率ε=0.10~0.25 s-1,失稳区域为T=900~1100℃、ε=0.3~1.8 s-1,建议该合金的最佳热加工窗口为完全再结晶区域。  相似文献   

15.
为了加快推动Ti-B25钛合金在舰船通信系统上的应用,利用前期构造的本构方程和热加工图优化出的工艺参数,使用DEFORM-3D有限元软件模拟了变形温度900℃、应变速率0.1 s-1工艺参数下的管材挤压过程,并对模拟过程进行了实际挤压验证。结果表明:在变形温度900℃、应变速率0.1 s-1条件下能成功挤压出?62 mm×12 mm的Ti-B25钛合金管坯,并且管坯具有良好的表面质量,组织中存在再结晶晶粒。管坯经过830℃/1 h+600℃/8 h固溶时效处理后具有良好的强-塑性匹配,满足舰船天线管使用要求。  相似文献   

16.
针对随炉成形及到温成形2种主要的热成形工艺,通过高温拉伸试验,从TA32钛合金热成形流变性能及组织演变的角度出发,首先研究温度、变形速率、应变量等共性因素的影响,再对比分析2种热成形工艺下不同升温速率和冷却方式等特性因素的影响。设计两因素两水平工艺试验,分析不同高温润滑剂及热成形条件下TA32钛合金的氧化行为。结果表明:温度为800℃、应变速率为0.001 s-1、保温时间为30 min、应变量为0.45~0.6,且选用到温热成形(升温速率为800℃/5 min,空冷)时,TA32钛合金的变形抗力较低,塑性较好,晶粒较为均匀,β相等轴晶粒较多,综合成形性能较好;到温成形条件下,选用立方氮化硼(CBN)作为高温润滑剂时,成形件的氧化程度最低。综合考虑,TA32钛合金板材最优高温成形方案为到温成形工艺并采用CBN作为高温润滑剂。  相似文献   

17.
热变形参数对7050铝合金微观组织的影响   总被引:5,自引:0,他引:5  
张飞  陈华  付欣  易幼平 《铝加工》2008,(4):25-28
在Gleeble-1500热模拟实验机上对7050铝合金试样在变形温度为250℃~450℃,应变速率为0.01~10s^-1,变形程度为50%、60%和70%的条件下进行等温压缩实验。利用透射电镜(TEM)分析了合金在不同变形参数条件下的微观组织特征。  相似文献   

18.
利用Gleeble-1500热模拟实验机,对2524铝合金进行高温等温压缩试验,实验变形温度为300~500℃,应变速率为0.01~10 s-1的条件下,研究了2524铝合金的流变变形行为。结果表明:合金流变应力的大小跟变形温度和应变速率有很大关联,2524铝合金真应力-应变曲线中,流变应力开始随应变增加而增大,达到峰值后趋于平稳,表现出动态回复特征,而峰值流变应力随变形温度的降低和应变速率的升高而增大;在流变速率ε为10 s-1,变形温度300℃以上时,应力出现锯齿波动,合金表现出动态再结晶特征。采用温度补偿应变速率Zener-Hollomon参数值来描述2524铝合金在高温塑性变形流变行为时,其变形激活能Q为216.647 kJ/mol。在等温热压缩形变中,合金可加工条件为:高应变速率(>0.5 s-1)或低应变速率(0.01 s-1~0.02 s-1)、高应变温度(440℃~500℃)。  相似文献   

19.
采用热模拟试验机对TC6钛合金轧制态试样进行了不同温度和不同应变速率的应力—应变试验,研究TC6钛合金的高温变形行为。试验结果表明,TC6钛合金在相同的温度下,应变速率越小,热塑性越好,越容易变形;应变速率对TC6钛合金热塑性的影响还与温度有很大的关系,温度越低,热塑性受应变速率的影响越明显。800~900℃时,TC6钛合金热塑性受温度影响较大,变形温度越低,热塑性越差;900℃以上时,几乎不受变形温度和应变速率的影响。TC6钛合金在920~950℃,应变速率1.0 s-1时具有良好的热塑性和很好的热加工性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号