首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 581 毫秒
1.
由于未考虑参数敏感性,经典的5参数Johnson-Cook模型在描述Ti-6Al-4V合金的动态力学响应时,会萎缩为少于5参数的模型。此外,该模型未考虑参数的耦合效应,一组参数仅仅需要在特定应变率和温度条件下的一条实验曲线就可以拟合得到,而所得参数在预测其他条件下的实验曲线时会遇到挑战。首先通过拉丁超立方抽样和Spearman秩相关分析理论结合的方法,对经典Johnson-Cook模型进行参数敏感度分析,得出5参数敏感度相当的合理取值范围并将其作为初始搜索区间。然后结合遗传算法对5个材料参数进行全局最优搜索,得到考虑5参数相互耦合变化的优化值。优化后的模型能够较好地预测Ti-6Al-4V合金在低应变率、不同温度下的应力-应变关系。此外,采用上述方法,并将材料参数考虑为温度的函数,预测了高应变率、不同温度下Ti-6Al-4V合金的力学行为,结果与实验值吻合。  相似文献   

2.
基于等温恒应变速率热压缩实验,探究了新型Ti-4Al-5Mo-6Cr-5V-1Nb合金在变形温度700~900℃、应变速率0.001~1.000 s-1条件下的热变形行为.通过真应力-真应变曲线分析了变形参数对合金力学性能的影响规律,选用修正的Arrhenuis双曲正弦函数模型推导了耦合应变的本构方程,基于动态材料模型...  相似文献   

3.
采用Gleeble 3500热模拟试验机研究了47Zr-45Ti-5Al-3V合金在变形温度为650~850℃和应变速率为1×10-3~1×100s-1的热变形行为。结果表明变形温度和应变速率对47Zr-45Ti-5Al-3V合金的热变形行为有显著影响。在低温和高应变率下,在变形初期阶段合金的流变曲线表现出一个显著的应力降现象,应力降幅值随变形温度的增加和应变速率的降低而降低,合金仅发生动态回复。在高温和低应变率下,真应力-应变曲线表现出典型的动态再结晶特征,流变应力随应变的增加先增加到一个峰值,随后随着应变的增加逐渐降低到一个稳态值。峰值应力随变形温度的降低和应变速率的增加而增大。Arrhenius-type本构方程在不同应变下的材料常数(α,Q,n和ln A)已经算出。热变形激活能Q随应变的增加先增加然后降低,而n随应变的增加逐渐降低到一个恒定值。通过应变补偿的Arrhenius-type本构方程对合金热变形过程中的流变应力进行预测,表明预测的流变应力值与实验数据吻合较好。  相似文献   

4.
利用Gleeble-3500热模拟试验机对Ti-22Al-24Nb-0.5Y合金试样进行等温恒应变速率压缩试验,采用摩擦及温度对试验数据进行修正,通过多元线性回归拟合的材料参数与应变量多项式函数关系,构建了基于应变补偿的Ti-22Al-24Nb-0.5Y合金本构模型。结果表明:摩擦及温度修正的流动应力更能够真实反映合金在高温变形过程中的动态响应;经摩擦修正后的流动应力均低于实验测得的流动应力,随温度的升高,摩擦修正的流动应力越接近于实测值;在低温高应变速率条件下,温升引起的流动应力变化较大,在低应变速率条件下和变形温度高于1050℃时,温升引起的流动应力变化较小。以应变为4次多项式拟合得到的本构模型能够较好预测热压缩模拟过程中流动应力,其相关系数R达到0.9907,平均相对误差E为4.79%。该模型可作为Ti_2AlNb基合金塑性成形过程中有限元模拟的本构关系。  相似文献   

5.
为了研究Ti6321合金在高温、高应变率下的力学行为,采用分离式霍普金森压杆装置对Ti6321合金进行室温(25℃)和高温(200、400、600℃)动态压缩试验,对其在高温和高应变率下的力学性能、应变率敏感性和温度敏感性进行了研究。采用聚类全局优化算法构建了双态组织Ti6321合金在103s-1下的Johnson-Cook本构模型。结果表明,双态组织Ti6321合金在室温和高温下均存在应变率硬化效应,但试验温度对流变应力的影响比应变率的影响更大。随着压缩试验温度升高,流变应力显著降低,温度敏感因子升高。Johnson-Cook模型拟合的曲线与实验曲线吻合良好,可以用于Ti6321合金高应变率下的力学仿真计算。  相似文献   

6.
作为一种新型合金,Ti-6Al-4V-0.1B合金显示了较好的塑性成形能力及应用前景。通过真空感应凝壳熔炼方法制备了Ti-6Al-4V-0.1B合金铸锭,随后在850~985℃的温度范围内和0.001~1 s-1的应变速率范围内对Ti-6Al-4V-0.1B合金进行热压缩测试。运用真应力-真应变曲线研究了合金的流动行为。利用光学显微镜(OM)、扫描电镜(SEM)和电子背散射衍射技术(EBSD)对合金显微组织进行了表征。研究结果显示,Ti-6Al-4V-0.1B合金的流动应力对温度和应变速率都是敏感的,且温度对流动应力的影响比应变速率大。与基体合金相比,Ti-6Al-4V-0.1B合金具有更高的应力指数和应变激活能,这归因于分布在晶界处的TiB增加了原子扩散的阻力,减慢了热变形动态软化过程。热压缩过程中,初生α相发生了明显的球化,球化过程也受变形温度和应变速率的影响。由于TiB与基体之间的应变不匹配导致了高应变速率下合金基体的开裂,随后裂纹沿着定向排列的TiB粒子扩展,因此Ti-6Al-4V-0.1B合金的热加工过程应在低应变速率下进行。  相似文献   

7.
文章研究了修正的Johnson-Cook(m-JC)本构模型对304奥氏体不锈钢高温流变行为的表征能力。利用不同温度、应变和应变速率等温热压缩试验的试验真应力-应变数据来计算本构模型的材料常数,建立了关于304奥氏体不锈钢的m-JC本构模型。通过比较预测结果的相关系数、平均相对误差以及均方差,评估了模型的适用性。结果表明,修正的JC模型预测结果和试验结果之间的平均相对误差绝对值为6.77%,相关系数为0.987,均方差为11.2 MPa, m-JC本构模型可以较为准确的描述304奥氏体不锈钢的流变行为。  相似文献   

8.
在Thermecmastor-Z动态热模拟试验机上对Ti-43Al-4Nb-1.4W合金进行高温压缩变形实验,实验温度范围为1 050~1 150℃,应变速率范围为0.001~1 s 1。根据该合金的真应力-真应变曲线,建立合金高温变形的本构方程和热加工图,并对不同变形区域的组织进行分析。结果表明:Ti-43Al-4Nb-1.4W合金高温压缩变形峰值应力与变形条件的关系可用双曲正弦函数来表示,其变形激活能为567.05 kJ/mol,高温变形的本构方程为:ε=3.37×1018.[sinh(0.0043σ)]3.27exp[567.05/(RT)];加工图显示该合金最佳加工区域的应变速率为0.001~0.01 s 1(η范围在40%~55%),在此加工区域内合金发生较明显的动态再结晶和β相的球化。  相似文献   

9.
通过热压缩实验,在温度950~1150℃和应变速率0. 10~10. 00 s~(-1)的范围内研究了Inconel 718高温合金的热变形行为。分析了绝热效应对应力应变曲线的影响,同时对应力应变曲线进行温度、应力修正。发现在低温高应变速率下绝热效应更加明显,温升可达170℃。经修正后的应力应变曲线并没有改变宏观规律。通过应变补偿Arrhenius型本构方程预测修正后合金的流动行为。Arrhenius型本构方程中的材料常数与真应变之间的关系由5阶多项式建立。实验值与预测值相关系数达到0. 97,说明该本构方程可以对变形过程中的流变应力进行精确预测。最后分别建立了应力应变曲线修正前后Inconel 718高温合金的热加工图。发现应力应变曲线的修正对热加工图中功率耗散图基本没有影响,功率耗散效率峰值区域没有变化。但修正后的失稳区区域面积增加。结合不同变形条件下的微观组织分析发现失稳区的微观组织由于绝热效应的原因并没有明显的失稳现象产生,并确定其合理加工区间为温度1100℃,应变速率0. 10 s~(-1)。  相似文献   

10.
采用Gleeble-3500热模拟实验机对Cu-Cr-Zr合金进行了压缩变形实验,分析了在变形温度为25~700℃、应变速率为0.0001~0.1000s-1的条件下流变应力的变化规律,利用扫描电镜及透射电镜分析合金在热压缩过程中的组织演变及动态再结晶机制。结果表明:Cu-Cr-Zr合金在热变形过程中发生了动态再结晶,且变形温度和应变速率均对流变应力有显著的影响,流变应力随着变形温度的升高而降低,随着应变速率的增加而升高,说明该合金属于正应变速率敏感材料;当变形温度为400~500℃时,低应变速率(0.0001~0.0010 s-1)的真应力-真应变曲线呈现动态再结晶曲线特征,高应变速率(0.01~0.10 s-1)的真应力-真应变曲线呈现动态回复特征;在真应力-真应变曲线的基础上,采用双曲正弦模型能较好地描述Cu-Cr-Zr合金高温变形时的流变行为,建立了完整描述合金热变形过程中流变应力与应变速率和变形温度关系的本构方程,确定了合金的变形激活能为311.43 kJ·mol-1。  相似文献   

11.
采用分离式霍普金森压杆装置(SHPB)技术,对Ti-6Al-4V合金的等轴组织、双态组织、片层组织进行高应变速率下的动态压缩实验,研究了不同组织状态的动态力学性能及其绝热剪切敏感性,并进行了金相观察及分析。结果表明:在动态压缩载荷条件下,Ti-6Al-4V合金3种组织的真应力-应变曲线大致分为弹性阶段和塑性阶段,没有出现明显的屈服阶段,3种组织试样在高应变率条件下,表现出一定的应变率强化效应,但是应变强化效应不明显;在较大的应变率下,不同组织状态下的试样表现出一个共同的特征,即平均应变都较小,但其应力值却较大;等轴组织的动态压缩力学性能优于其他两种组织;从试样的横剖面和轴剖面的分析来看,不同组织对Ti-6Al-4V合金的绝热剪切敏感性有较大的影响,层片组织具有最大的绝热剪切敏感性,而等轴组织具有最小的绝热剪切敏感性,双态组织介于两者之间。  相似文献   

12.
利用Gleeble-1500热模拟实验机,进行了Ti-26合金等温恒应变速率压缩试验,获得了不同温度(700~940℃)、应变速率(0.01~10 s-1)、真应变下的流变应力数据。基于实验数据,根据BP人工神经网络原理算法,建立了Ti-26钛合金高温塑性变形时流变应力的预测模型,训练结束后的神经网络即成为Ti-26钛合金的一个知识基的本构关系模型。预测结果表明,该神经网络本构关系模型具有很高的精度,可用于指导Ti-26钛合金热加工工艺的制定及热成形过程的有限元模拟。  相似文献   

13.
粉末冶金Ti-1.5Fe-2.25Mo钛合金的热变形本构方程   总被引:1,自引:0,他引:1  
采用元素粉末法制备Ti-1.5Fe-2.25Mo合金,在Thermec-Master Z热模拟机上对该合金进行等温压缩试验。实验温度为650~900℃,变形速率0.01~10 s-1。以经典的双曲正弦形式的模型为基础,对热模拟真应力-真应变曲线进行计算和分析,建立粉末冶金Ti-1.5Fe-2.25Mo合金高温本构方程。研究表明,β相区等温压缩时,合金流变应力快速达到峰值然后进入稳态流变变形阶段,应力指数n=4.24,应变激活能Q=378.01 kJ/mol。而在α+β两相区等温压缩时,合金在较低应变速率(≤0.1 s-1)下,曲线经过应力峰后出现不同程度的加工软化现象;在应变速率≥1 s-1条件下,呈现出1种稳态变形,热变形的应力指数n=6.77,应变激活能Q=257.73 kJ/mol。所得结果为粉末冶金钛合金锻造成形提供了一定的理论依据。  相似文献   

14.
Tamirisakandala等报道了通过在Ti-6Al-4V合金中添加0.1%硼,使合金的β晶粒尺寸由1 700μm减小为200μm。然而截至目前,对于添加硼的Ti-6Al-4V合金在热机械加工过程中的变形行为和显微组织演化还不是很清楚。为此,印度学者ShibayanRoy等人对添加硼的Ti-6Al-4V合金进行了热压缩试验,研究了变形温度和应变速率对变形行为和组织  相似文献   

15.
程亮  常辉  樊江昆  唐斌  寇宏超  李金山 《钢铁钒钛》2013,34(1):22-25,40
对新型近β钛合金Ti-7333进行等温压缩试验,并对合金的流变行为进行研究.研究结果表明:Ti-7333的流变应力对变形参数的变化十分敏感,随着温度的升高和应变速率的下降,流变应力显著减小;合金的变形以动态回复为主,动态再结晶为辅.基于Mecking和Bergstrom提出的合金热变形过程中的位错密度演变模型建立了Ti-7333合金的本构模型,准确地描述了合金热变形过程中的流变应力,并且模型中参数数量较少,便于应用.  相似文献   

16.
在Gleeble-3500热模拟试验机上对Ti-25Al-14Nb-2Mo-1Fe合金进行了等温恒应变速率压缩试验,研究了在变形温度为950~1 100℃,应变速率为0.001~1 s-1,最大变形程度为50%的条件下合金的热压缩变形流变应力行为与微观组织演变。结果表明:Ti-25Al-14Nb-2Mo-1Fe合金的流变应力对变形温度和应变速率均较为敏感,其流变应力曲线具有应力峰值、流变软化和稳态流变的特征。在变形温度为950℃,应变速率为0.001~0.1 s-1的条件下,Ti-25Al-14Nb-2Mo-1Fe合金的热变形特性为片层组织球化,其热变形机制可用晶界分离球化模型进行解释说明;在变形温度为1 000~1 100℃,应变速率为1 s-1的条件下,材料只发生了动态回复现象;在变形温度为1 050~1 100℃,应变速率为0.001~0.1 s-1的条件下,材料发生了动态再结晶现象。  相似文献   

17.
以Ti-45Al合金粉、Nb粉、Al粉和TiB2合金粉为原料,采用放电等离子烧结法制备含纳米TiB增强相的Ti-45Al-7Nb-1B合金,通过热模拟实验研究该合金在900~1 200℃、应变速率为0.001~1 s-1条件下的热变形行为,推导出高温变形流变本构方程,并建立基于动态材料模型的热加工图。结果表明:含纳米TiB增强相的Ti-45Al-7Nb-1B合金的高温流变应力与变形条件之间的关系可用双曲正弦函数描述,其高温变形激活能为497.95k J/mol,在高应变速率(0.1 s-1)条件下变形时,材料发生失稳变形,最佳变形参数区间为1 000~1 130℃/0.001~0.01 s~(-1)。  相似文献   

18.
采用Gleeble-1500D热模拟试验机研究机械合金化制备的ODS-310合金在变形温度为1 050~1 150℃、应变速率为0.001~1 s-1条件下的高温变形行为,测定其真应力-应变曲线,分析其流变应力与应变速率及变形温度三者之间的关系,并采用Zener-Hollomon参数法建立ODS-310合金的高温变形本构方程,基于动态材料模型,构造ODS-310合金的热加工图。结果表明:ODS-310合金的流变应力随变形温度降低或应变速率提高而增大;该合金热变形过程中的流变行为可用双曲线正弦模型来描述,在实验条件下的平均变形激活能为828.384 kJ/mol;真应变为0.4的热加工图表明,ODS-310合金在高温变形时存在2个加工失稳区,即变形温度为1 050~1 070℃、变形速率为0.01~1s-1的区域,和变形温度为1 130~1 150℃、变形速率为0.1~1 s-1的区域;ODS-310合金的最佳变形温度和应变速率分别为1 150℃和0.001 s-1。  相似文献   

19.
一种新型亚稳β钛合金的热变形本构模型   总被引:1,自引:0,他引:1  
基于新型亚稳β钛合金Ti2448在温度范围为1023~1123 K,应变速率范围为63.000~0.001 s-1的等温热压缩流动应力曲线特征,采用经典的应力-位错密度关系式和动态再结晶动力学模型构建了完整描述亚稳β钛合金热变形流动应力与应变、应变速率和变形温度关系的本构模型.位错密度变化方程和Avrami方程被用来分别描述合金在高(≥1s-1)低(<1 s-1)应变速率下呈现的动态回复(DRV)和动态再结晶(DRX)两种不同的变形机制.最终通过应用全局优化求解非线性方程的新方法确定本构模型中的相关参数.根据本文所建模型得到的预测曲线和实验曲线吻合较好,能够有效预测Ti2448在热变形过程中的流动应力,为构建亚稳β钛合金热变形本构模型提供一种有效方法.  相似文献   

20.
在Gleeble-3180热模拟机上对碳化硅颗粒增强铝基(SiCp/2014Al)复合材料进行热压缩试验,研究其在变形温度为350,400,450 ℃和500 ℃,应变速率为0.001,0.01,0.1s-1和1.0 s-1条件下的热变形行为。根据热压缩实验的真应变-真应力数据,在考虑应变、应变速率和变形温度对流动应力的耦合影响下构建修正的Johnson-Cook(JC)本构模型,同时建立人工神经网络模型(ANN)。结果表明:SiCp/2014Al复合材料的流变应力随应变速率的增加和温度的降低而增大。与修正的JC模型相比,ANN模型具有较低的均方根误差(0.51 MPa)和平均绝对误差(1.43%),以及较高的相关系数(0.999 7),表明其对SiCp/2014Al复合材料热变形流变应力的预测具有更高的预测精度和可靠性。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号