首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
采用XRD、SEM+EDS和电化学性能测试仪对复合合金Ti1.8(VFe)CrNi0.2+xwt%LaNi5(x=0,5,10,20)的相结构及其在323K下电化学性能进行表征。结果表明,随LaNi5的添加,合金由胞状晶的BCC结构的Ti-V-Cr基相和体心四方结构的Cr-Ni-Ti-Fe为主相逐渐转变为树枝晶的Ti-V-Cr-Fe-Ni为主相的BCC单结构。电化学性能显示,随x的变化,复合合金的活化及放电容量等呈规律性变化。x=5时,合金的活化和放电容量明显改善,需9次活化且达到最大值360mAh/g,这是因为棒状晶的形成和第二相Cr-Ni-Ti-Fe相与Ti-V-Cr基主相独特的协同作用。  相似文献   

2.
系统研究了TiV2.1Nix(x=0.2,0.3,0.4,0.5,0.6)贮氢合金的相结构及电化学性能。XRD及SEM分析表明:合金均由体心立方(bcc)结构的V基固溶体主相和TiNi基第二相组成;随着Ni含量x的增加,合金中V基固溶体主相的相含量和晶胞参数逐渐减小,TiNi基第二相含量逐渐增多,且当x≥0.4时,TiNi基第二相组织沿主相晶界形成明显的三维网络状结构。电化学测试表明:随着x的增加,合金的高倍率放电性能及循环稳定性均得到显著改善;但当x从0.4增加到0.6时,合金的活化性能变差,最大放电容量降低。在研究的合金中,TiV2.1Ni0.4表现出较好的综合性能。  相似文献   

3.
研究了V含量由5at%升高到35at%时,Ti-V-Cr储氢合金组织、相结构及储氢性能的变化.SEM及XRD结果显示:V含量为5at%的Ti-V-Cr合金由Cr1.97Ti1.07相和Cr2Ti相及很少量的Ti相组成;V含量为10at%的Ti-V-Cr合金除了包含前述的3相外还出现了一定量的V基bcc固溶体相;而V含量为35at%的Ti-V-Cr合金转变为以V基bcc固溶体为主相的固溶体储氢合金.随着V含量的升高和组织结构的变化,Ti-V-Cr合金最大吸氢量升高,放氢率也增大,但是吸氢速率显著减小,活化性能变差.室温下,V含量为35at%的合金具有最大的吸氢量并且放氢率也最高,最大储氢量和放氢率分别是2.86%(质量分数)和61%.  相似文献   

4.
研究了V基固溶体型贮氢合金(TiV211Ni013和TiV211Ni015)与Cu粉进行复合球磨处理对其相结构及电化学性能的影响。X射线衍射和扫描电镜分析表明,铸态合金均由体心立方(bcc)结构的V基固溶体主相和bcc结构的TiNi基第二相组成;当与Cu粉复合球磨处理后,合金均变成由V基固溶体主相和体心四方(bct)结构的CuNi2Ti第二相组成,且合金颗粒的表面状态发生改变。电化学测试表明,球磨处理后合金电极的最大放电容量增加了25~39mA·h/g,100次循环容量保持率大幅提高,循环稳定性得到显著改善。结果表明,Cu粉复合球磨处理是通过同时改变V基合金的第二相成分和晶体结构以及合金颗粒的表面状态来改善合金的电极性能,这与其他传统球磨方式仅通过改变合金的表面状态来改善电极性能的作用机制有所不同。  相似文献   

5.
研究了V基固溶体型贮氢合金(TiV21Ni0.3和TiV21Ni05)与Cu粉进行复合球磨处理对其相结构及电化学性能的影响.X射线衍射和扫描电镜分析表明,铸态合金均由体心立方(bcc)结构的V基固溶体主相和bcc结构的TiNi基第二相组成;当与Cu粉复合球磨处理后,合金均变成由V基固溶体主相和体心四方(bct)结构的CuNi2Ti第二相组成,且合金颗粒的表面状态发生改变.电化学测试表明,球磨处理后合金电极的最大放电容量增加了25~39 mA·h/g,100次循环容量保持率大幅提高,循环稳定性得到显著改善.结果表明,Cu粉复合球磨处理是通过同时改变V基合金的第二相成分和晶体结构以及合金颗粒的表面状态来改善合金的电极性能,这与其他传统球磨方式仅通过改变合金的表面状态来改善电极性能的作用机制有所不同.  相似文献   

6.
TiV2.1Nix(x=0.2~0.6)贮氢合金的相结构及电化学性能   总被引:2,自引:0,他引:2  
系统研究了TiV2.1Nix(x=0.2,0.3,0.4,0.5,0.6)贮氢合金的相结构及电化学性能。XRD及SEM分析表明:合金均由体心立方(bcc)结构的V基固溶体主相和TiNi基第二相组成;随着Ni含量x的增加,合金中V基固溶体主相的相含量和品胞参数逐渐减小,TiNi基第二相含量逐渐增多,且当x≥0.4时,TiNi基第二相组织沿主相晶界形成明显的三维网络状结构。电化学测试表明:随着x的增加,合金的高倍率放电性能及循环稳定性均得到显著改善;但当x从0.4增加到0.6时,合金的活化性能变差,最大放电容量降低。在研究的合金中,TiV2.1Ni0.4表现出较好的综合性能。  相似文献   

7.
研究了热处理前后Ti1.4V0.6Ni合金的结构和电化学性能。采用X射线粉末衍射(XRD)方法分析合金的结构。电化学特性包括放电容量、循环稳定性和高倍率放电性能等。XRD衍射分析表明,在590°C热处理30min的合金,主要包含正二十面体准晶相、Ti2Ni(FCC)相、V基固溶相(BCC)和C14Laves相(Hex)。电化学测试显示,热处理后在30°C和放电电流密度为30mA/g的条件下,合金电极的最大放电容量可达330.9mA·h/g,并且循环稳定性和高倍率放电性能也得到改善。此外,通过电化学阻抗和合金内部氢的扩散系数研究了合金电极的动力学性能。  相似文献   

8.
详细研究了过化学计量比无钴合金 Ml(Ni0 .82 Mn0 .0 7Al0 .0 6 Fe0 .0 5) 5.4 在常规熔铸、快速凝固、退火处理不同制备条件下的组织结构和电化学性能。X射线衍射 (XRD)分析表明 ,常规熔铸合金由 Ca Cu5型主相加少量的第二相(Al Ni3)组成 ,而快速凝固合金的第二相析出得到一定程度的抑制 ,常规熔铸合金经 10 0 0℃退火处理后 ,部分第二相溶解消失。电化学测试表明 ,与常规熔铸合金相比 ,快速凝固和退火处理均大大提高了合金的电化学循环稳定性 ,但活化性能和高倍率放电性能稍有下降。快速凝固合金的电化学容量有所提高 ,而退火合金的放电容量与常规熔铸合金的基本相当  相似文献   

9.
为改善Mg_2Ni储氢合金的电化学性能,采用机械合金化法(mechanical alloying,MA),分别制备出改性合金Mg_(1.8)ZrNi以及MgTi_3,按一定比例和Ni混合球磨,制备出纳米晶或非晶化的Mg_(1.8)Zr_(0.2)Ni-(1.2–X)Ni-XMgTi_3(X=0.0~0.8)复合储氢合金。结果表明,经部分取代改性和包覆修饰后的复合储氢合金,其表面和内部形成较多的纳米级褶皱、空隙和多相结构缺陷。随着MgTi_3含量增加(X=0.0~0.5),Mg_(1.8)Zr_(0.2)Ni-(1.2–X)Ni-XMgTi_3复合储氢合金初始放电比容量也逐渐增加,当MgTi_3含量为X=0.5时,合金初始放电比容量为973.3 m Ah·g~(-1)。但MgTi_3含量X0.5时,其初始放电比容量又有所下降。研究表明,添加MgTi_3却不利于复合储氢合金的循环稳定性和高倍率放电性能。通过对Mg_(1.8)Zr_(0.2)Ni-(1.2–X)Ni-XMgTi_3复合储氢合金进行线性极化、阳极极化和交流阻抗测试,进一步研究了系列合金电极的表面电化学反应、电荷转移过程、氢在合金中的扩散情况以及它们的电化学性能。  相似文献   

10.
为了提高V基固溶体贮氢合金的充放电循环稳定性能,研究了O含量对V2-xTi0.5Cr0.5NiO x(x=0~0.35)合金的组织结构和电化学性能的影响。组织结构分析表明,当没有添加O时,合金主要由bcc结构的V基固溶体相和TiNi相组成,随着O含量的增加,合金中出现了Ti4Ni2O新相。电化学测试表明,随着O含量的增加合金电极的最大放电容量有所降低,从x=0时的366.8 mAh/g降低到x=0.35时的225.3 mAh/g,而较少氧含量时,合金电极的循环稳定性能明显得到了改善,从x=0时的69.9%增大到x=0.2时的83.7%,而后又降低到76.9%(x=0.35)。电化学动力学分析结果表明,合金的高倍率放电性能,交换电流密度和氢的扩散系数均随着O含量的增加先增加而后减小。  相似文献   

11.
对LaMg_(0.25)Ni_(4.0-x)Co_(0.75)Al_x(x=0~0.3)系列合金进行了快速凝固处理(15m/s),系统研究了该条件下Al部分替代Ni对合金相结构和电化学性能的影响。XRD分析结果表明,合金主要由La4MgNi19相(A5B19型)和LaNi5相(CaCu5型)相组成,两相的晶胞体积(V)和LaNi5相的相丰度均随x的增加而增大。电化学性能测试表明,x的增加,会使合金的活化性能、最大放电容量以及高倍率放电性能(HRD)下降,但循环稳定性有明显改善,如100次循环后的容量保持率(S100)从x=0的59.07%提高到了x=0.3合金的85.99%。研究认为,合金中较高吸氢相(A5B19型)随x的增加而减少是导致合金电极最大放电容量下降的主要原因,而循环寿命的改善则是由于Al含量的增加降低了合金颗粒的吸氢体积膨胀率,同时减小了两种吸氢主相在吸放氢过程中产生的内应力,从而降低了合金电极的粉化程度所致。  相似文献   

12.
采用中间合金法在感应熔炼炉中制备La_4MgNi_(19-x)Co_x(x=0~2)合金,研究Co部分替代Ni对合金相结构和电化学性能的影响。XRD测试结果表明:合金主要由La_4MgNi_(19)(Ce_5Co_(19)+Pr_5Co_(19))相和LaNi_5相组成;x的增加有利于促进La_4MgNi_(19)相的形成,且晶胞体积随之增大。显微组织观察发现,合金为树枝晶结构,x的增加会使树枝晶变细。电化学测试表明:合金均具有良好的活化性能和高倍率放电性能(HRD_(600)92.57%);随着x的增加,合金的最大放电容量明显提高(从x=0时的359.23 m A·h/g增大到x=2的380.85 m A·h/g),而循环寿命则先下降后逐渐提升。高倍率放电性能主要由合金电极的扩散系数控制,而循环稳定性的下降则是由于合金中La_4MgNi_(19)相的增加使膨胀率和晶间应力集中增大加速粉化所致。  相似文献   

13.
为了改善钛钒基固溶体合金的电催化活性和动力学性能,采用两步电弧熔炼法制备储氢复合合金Ti0.10Zr0.15V0.35Cr0.10Ni0.30–10%LaNi3,利用X-射线衍射、场发射扫描电镜-能谱、电化学阻抗谱和恒流充放电测试技术系统研究该储氢复合合金电极的电化学性能与协同效应。结果表明:该复合合金的主相是BCC结构的钒基固溶体相和六方结构的C14Laves相,在复合过程中生成了第二相;复合合金电极的综合电化学性能较母体合金有显著改善;复合合金电极的活化周期为5周,最大放电容量为362.5mA·h/g,在233K时放电能力为65.84%;在活化、复合、任意循环及高、低温和高倍率放电过程中,该储氢复合合金电极的放电容量均存在协同效应;该复合合金电极的电荷转移电阻和交换电流密度均存在协同效应。  相似文献   

14.
采用自蔓延高温合成法制备V3TiNi0.56Al0.2Crx(x=0~0.3)贮氢合金,经XRD和电化学测试等研究Cr添加量对合金微结构及电化学性能的影响。结果表明:当x为0、0.1和0.2时,V3TiNi0.56Al0.2Crx合金均由V基固溶体主相和TiNi相组成;当x=0.3时,合金由V基固溶体主相和具有六方结构的C14型Laves相组成;随着Cr含量的增加,合金主相的晶胞常数和晶胞逐渐减小;添加Cr以后,合金电极的最大放电容量降低,对活化性能基本没有影响;此外,添加Cr可使合金循环性能得到明显改善,V3TiNi0.56Al0.2Cr0.3合金经过10次充放电循环后,容量保持率为99%,大电流放电性能最好;随着Cr含量的增加,合金中氢的扩散系数逐渐增大。  相似文献   

15.
研究了合金元素掺杂对TiV2.1Ni0.4系列合金的相结构及电化学性能的影响。XRD分析表明,该合金由V基固溶体主相和以网状分布于主相晶界的Ti2Ni第二相和C15型Laves第三相组成。BEI、EDS和电化学测试表明,Zr、Cu合金元素进入第二相晶格而使合金的电化学容量略降,但提高了合金的循环性能;Cr元素由于大部分进入到主相晶格而使合金的电化学循环性能大幅度提高,经40次循环后容量保持率仍达88.4%,但最大放电容量有所降低。  相似文献   

16.
为了探索化学计量比B/A(A和B分别为电极合金A侧和B侧元素的总和)以及Co替代Ni对ABx(x=2.5~3.5)型电极合金微观结构及电化学性能的影响,制备了电极合金La0.75Mg0.25Ni2.5Mx(M=Ni,Co;x=0,0.2,0.4,0.6,0.8,1.0)。系统地分析测试了合金的微观结构及电化学性能。结果表明,合金的微观结构与电化学性能与化学计量比B/A(相当于M含量x)密切相关。合金均具有多相结构,包括LaNi2,(La,Mg)Ni3和LaNi5相。随化学计量比B/A的增加,合金的主相由LaNi2转为(La,Mg)Ni3+LaNi5相,并且合金的电化学性能,包括放电容量、高倍率放电能力(HRD)、放电电压特性等均显著改善。  相似文献   

17.
铸态Mm(NiCoMnAl)5.1Bx贮氢合金电化学性能研究   总被引:1,自引:0,他引:1  
本文研究了B含量对铸态非化学计量比贮氢使合金Mm(NiCoMnAl)5.1Bx的相结构及其电化学性能的影响。结果表明,加B合金中除了CaCu5相以外还含有一定量的第二相MmCo4B,且随着B元素含量的增加而增加;B的加入有利于提高合金的活化性能和高倍率放电性能,合金的循环寿命亦有所提高,但不利于合金的放电容量和放电电压性能。  相似文献   

18.
针对电动车用大型动力Ni/MH电池工作温度较高的特点 ,系统地研究了Mn部分取代Ni对贮氢合金RENi3 .95-xMnxCo0 .75Al0 .3 相结构和高温 (6 0℃ )电化学性能的影响。结果表明 ,RENi3.95-xMnxCo0 .75Al0 .3(x =0~0 .6 )合金具有单一的CaCu5型LaNi5相结构 ,其晶胞体积随Mn含量的增加而增大 ;Mn的加入能有效地改善合金的高温活化性能和放电容量 ,但会加快合金的循环容量衰退 ,降低充放电循环稳定性 ;Mn含量在x =0 .3~ 0 .5时 ,合金具有较好的高温高倍率放电性能  相似文献   

19.
研究了Mn替代Ni对La2Mg0.9Al0.1Ni7.5-xCo1.5Mnx(x=0,0.3,0.6,0.9)贮氢合金相结构和电化学性能的影响。XRDRietveld全谱拟合分析表明:Mn替代改变了合金的物相组成和物相的丰度。LaNi3相消失,αLa2Ni7相丰度的变化表现为先增加(x=0,0.3)后减少(x=0.6,0.9),LaMgNi4相和La5Ni19相的丰度则随合金中Mn含量x的增加而增加。Mn替代Ni降低了合金的贮氢容量、最大电化学放电容量和活化性能,La2Mg0.9Al0.1Ni7.2Co1.5Mn0.3合金电极表现出最好的电化学循环稳定性,合金的高倍率放电性能随Mn含量的增加降低,这归因于交换电流密度(I0)和氢扩散系数(D)的降低。  相似文献   

20.
采用X射线衍射方法、压力-成分等温线、电化学放电循环研究了AB5型La0.7Mg0.3Al0.3Mn0.4Co0.5-xSnxNi3.8(x=0,0.1,0.2,0.3,0.5)合金中用Sn替换Co对其显微结构、储氢性能和电化学放电容量的影响。XRD、SEM及EDS测试结果表明,所有的合金都主要由La Ni5和Mg Ni2相组成,但随着合金中Sn含量的逐渐增加,出现LaNiSn相且显微结构得到细化。压力-成分等温线表明,随着合金中Sn含量的增加,合金的最大储氢容量从1.48%(x=0)降低到0.85%(x=0.5)。电化学测试结果表明,随着合金中Sn含量的增加,合金的最大放电容量从337.1 mA·h/g(x=0)降低到249.8 mA·h/g(x=0.5);充放电循环100次的放电容量保持率从70.2%(x=0)增加到78.0%(x=0.5)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号