首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In this work, it is shown that the hydrophilic functionalized multiwall carbon nanotubes (MWCNs) can stabilize a large amount of pristine graphene nanosheets in pure water without the assistance of surfactants, ionic liquids, or hydrophilic polymers. Role of stabilizer is conveyed by highly hydrophilic carbon nanotubes, functionalized by dihydroxy phenyl groups, affording a stable dispersion at concentrations as high as 15 mg mL?1. Such multidimensional (2D/1D) graphene/MWCN hybrid is found to be dispersible also in other polar organic solvents such as ethanol, isopropanol, N,N‐dimethylformamide, ethylene glycol, and their mixtures. High‐resolution transmission microscopy and atomic force microscopy (AFM) including a liquid mode AFM manifest several types of interaction including trapping of multiwalled carbon nanotubes between the graphene sheets or the modification of graphene edges. Molecular dynamic simulations show that formation of an assembly is kinetically controlled. Importantly, the hybrid can be deposited on the paper by drop casting or dispersed in water‐soluble polymers resulting in record values of electrical conductivity (sheet resistance up to Rs ≈ 25 Ω sq?1 for free hybrid material and Rs ≈ 1300 Ω sq?1 for a polyvinilalcohol/hybrid composite film). Thus, these novel water dispersible carbon superstructures reveal a high application potential as conductive inks for inkjet printing or as highly conductive polymers.  相似文献   

2.
Highly efficient and bendable organic solar cells (OSCs) are fabricated using solution‐processed silver nanowire (Ag NW) electrodes. The Ag NW films were highly transparent (diffusive transmittance ≈ 95% at a wavelength of 550 nm), highly conductive (sheet resistance ≈ 10 Ω sq?1), and highly flexible (change in resistance ≈ 1.1 ± 1% at a bending radius of ≈200 μm). Power conversion efficiencies of ≈5.80 and 5.02% were obtained for devices fabricated on Ag NWs/glass and Ag NWs/poly(ethylene terephthalate) (PET), respectively. Moreover, the bendable devices fabricated using the Ag NWs/PET films decrease slightly in their efficiency (to ≈96% of the initial value) even after the devices had been bent 1000 times with a radius of ≈1.5 mm.  相似文献   

3.
Flexible transparent supercapacitors (FTSs) have aroused considerable attention. Nonetheless, balancing energy storage capability and transparency remains challenging. Herein, a new type of FTSs with both excellent energy storage and superior transparency is developed based on PEDOT:PSS/MXene/Ag grid ternary hybrid electrodes. The hybrid electrodes can synergistically utilize the high optoelectronic properties of Ag grids, the excellent capacitive performance of MXenes, and the superior chemical stability of PEDOT:PSS, thus, simultaneously demonstrating excellent optoelectronic properties (T: ≈89%, Rs: ≈39 Ω sq−1), high areal specific capacitance, superior mechanical softness, and excellent anti-oxidation capability. Due to the excellent comprehensive performances of the hybrid electrodes, the resulting FTSs exhibit both high optical transparency (≈71% and ≈60%) and large areal specific capacitance (≈3.7 and ≈12 mF cm−2) besides superior energy storage capacity (P: 200.93, E: 0.24 µWh cm−2). Notably, the FTSs show not only excellent energy storage but also exceptional sensing capability, viable for human activity recognition. This is the first time to achieve FTSs that combine high transparency, excellent energy storage and good sensing all-in-one, which make them stand out from conventional flexible supercapacitors and promising for next-generation smart flexible energy storage devices.  相似文献   

4.
An effective method for depositing highly transparent and conductive ultrathin silver (Ag) electrodes using minimal oxidation is reported. The minimal oxidation of Ag layers significantly improves the intrinsic optical and structural properties of Ag without any degradation of its electrical conductivity. Oxygen‐doped Ag (AgOx) layers of thicknesses as low as 6 nm exhibit completely 2D and continuous morphologies on ZnO films, smaller optical reflections and absorbances, and smaller sheet resistances compared with those of discontinuous and granular‐type Ag layers of the same thickness. A ZnO/AgOx/ZnO (ZAOZ) electrode using an AgOx (O/Ag = 3.4 at%) layer deposited on polyethylene terephthalate substrates at room temperature shows an average transmittance of 91%, with a maximum transmittance of 95%, over spectral range 400?1000 nm and a sheet resistance of 20 Ω sq?1. The average transmittance value is increased by about 18% on replacing a conventional ZnO/Ag/ZnO (ZAZ) electrode with the ZAOZ electrode. The ZAOZ electrode is a promising bottom transparent conducting electrode for highly flexible inverted organic solar cells (IOSCs), and it achieves a power conversion efficiency (PCE) of 6.34%, whereas an IOSC using the ZAZ electrode exhibits a much lower PCE of 5.65%.  相似文献   

5.
Pulsed laser deposited gallium doped zinc oxide (ZnO:Ga) is reported as transparent top electrode for organic solar cells. In contrast to standard coating techniques, prone to harm organic sublayers and leading to strongly reduced device efficiencies, eclipse pulsed laser deposition (PLD) in argon atmosphere is identified as compatible, nonharmful deposition method for ZnO:Ga, even on top of sensitive organic material. Although PLD is not yet ready for mass production, the experiments reveal and solve crucial process limitations, e.g., droplet impacts, which might be useful also for high yield deposition methods. Optimized ZnO:Ga top electrodes achieve a high mean transparency in the visible spectral range of Tvis = 82.7% and a reasonable sheet resistance of RS = 83 Ω sq?1. The organic photovoltaic devices prepared with this electrode obtained an efficiency of η = 2.9%, almost equal to the efficiency of reference samples using a state‐of‐the‐art metal top contact (η = 3.0%). The investigations here demonstrate the successful deposition of transparent conductive oxides as top electrode for organic devices and open a new path towards the combination of metal oxides and organic semiconductors.  相似文献   

6.
As a critical part of flexible electronics, flexible circuits inevitably work in a dynamic state, which causes electrical deterioration of brittle conductive materials (i.e., Cu, Ag, ITO). Recently, gallium‐based liquid metal particles (LMPs) with electrical stability and self‐repairing have been studied to replace brittle materials owing to their low modulus and excellent conductivity. However, LMP‐coated Ga2O3 needs to activate by external sintering, which makes it more complicated to fabricate and gives it a larger short‐circuit risk. Core–shell structural particles (Ag@LMPs) that exhibit excellent initial conductivity(8.0 Ω sq?1) without extra sintering are successfully prepared by coating nanosilver on the surface of LMPs through in situ chemical reduction. The critical stress at which rigid Ag shells rupture can be controlled by adjusting the Ag shell thickness so that LM cores with low moduli can release, achieving real‐time self‐repairing (within 200 ms) under external destruction. Furthermore, a flexible circuit utilizing Ag@LMPs is fabricated by screen printing, and exhibits outstanding stability and durability (R/R0 < 1.65 after 10 000 bending cycles in a radius of 0.5 mm) because of the functional core–shell structure. The self‐repairable Ag@LMPs prepared in this study are a candidate filler for flexible circuit design through multiple processing methods.  相似文献   

7.
Organic bulk‐heterojunction solar cells using thin‐film single‐walled carbon‐nanotube (SWCNT) anodes deposited on glass are reported. Two types of SWCNT films are investigated: spin‐coated films from dichloroethane (DCE), and spray‐coated films from deionized water using sodium dodecyl sulphate (SDS) or sodium dodecyl benzene sulphonate (SDBS) as the surfactant. All of the films are found to be mechanically robust, with no tendency to delaminate from the underlying substrate during handling. Acid treatment with HNO3 yields high conductivities >1000 S cm?1 for all of the films, with values of up to 7694 ± 800 S cm?1 being obtained when using SDS as the surfactant. Sheet resistances of around 100 Ω sq?1 are obtained at reasonable transmission, for example, 128 ± 2 Ω sq?1 at 90% for DCE, 57 ± 3 Ω sq?1 at 65% for H2O:SDS, and 68 ± 5 Ω sq?1 at 70% for H2O:SDBS. Solar cells are fabricated by successively coating the SWCNT films with poly(3,4‐ethylenedioxythiophene):poly(styrene sulphonate) (PEDOT:PSS), a blend of regioregular poly(3‐hexylthiophene) (P3HT) and 1‐(3‐methoxy‐carbonyl)‐propyl‐1‐phenyl‐(6,6)C61 (PCBM), and LiF/Al. The resultant devices have respective power conversions of 2.3, 2.2 and 1.2% for DCE, H2O:SDS and H2O:SDBS, with the first two being at a virtual parity with reference devices using ITO‐coated glass as the anode (2.3%).  相似文献   

8.
Metallic nanofiber networks (MNFNs) are very promising for next‐generation flexible transparent electrodes (TEs) since they can retain outstanding optical and electrical properties during bending due to their ultralong and submicron profile. However, it is still challenging to achieve cost‐effective and high‐throughput fabrication of MNFNs with reliable and consistent performance. Here, a cost‐effective method is reported to fabricate high‐performance MNFN‐TEs via templated electrodeposition and imprint transfer. The fabricated electrodeposition template has a trilayer structure of glass/indium tin oxide/SiO2 with nanotrenches in the insulating SiO2 that can be utilized for repeated electrodeposition of the MNFNs, which are then transferred to flexible substrates. The fabricated TEs exhibit excellent optical transmittance (>84%) and electrical conductivity (<0.9 Ω sq?1) and show desirable mechanical flexibility with a sheet resistance <2 Ω sq?1 under a bending radius of 3 mm. Meanwhile, the MNFN‐TEs reproduced from the reusable template show consistent and reliable performance. Additionally, this template‐based method can realize the direct patterning of MNFN‐TEs with arbitrary conductive patterns by selective masking of the template. As a demonstration, a flexible dynamic electroluminescent display is fabricated using TEs made by this method, and the light‐emitting pattern is observable from both sides.  相似文献   

9.
A hybrid approach for the realization of In‐free transparent conductive layers based on a composite of a mesh of silver nanowires (NWs) and a conductive metal‐oxide is demonstrated. As metal‐oxide room‐temperature‐processed sol–gel SnOx or Al:ZnO prepared by low‐temperature (100 °C) atomic layer deposition is used, respectively. In this concept, the metal‐oxide is intended to fuse the wires together and also to “glue” them to the substrate. As a result, a low sheet resistance down to 5.2 Ω sq‐1 is achieved with a concomitant average transmission of 87%. The adhesion of the NWs to the substrate is significantly improved and the resulting composites withstand adhesion tests without loss in conductivity. Owing to the low processing temperatures, this concept allows highly robust, highly conductive, and transparent coatings even on top of temperature sensitive objects, for example, polymer foils, organic devices. These Indium‐ and PEDOT:PSS‐free hybrid layers are successfully implemented as transparent top‐electrodes in efficient all‐solution‐processed semitransparent organic solar cells. It is obvious that this approach is not limited to organic solar cells but will generally be applicable in devices which require transparent electrodes.  相似文献   

10.
An R2O–B2O3–SiO2 (R = Li, Na, K) polarizing glass containing Ag nanorods is prepared by thermal elongation–reduction technology. The transverse and longitudinal plasmon absorption peaks of the embedded Ag nanorods are near 460 and 720 nm, respectively. When the polarization of the laser is parallel to the long axis of the Ag nanorods, the nonlinear absorption coefficient β = 0.82 cm GW–1 and the nonlinear refractive index n2 = –1.5 × 10–4 cm2 GW–1. When the polarization of light is perpendicular to the long axis of the Ag nanorods β = 0.12 cm GW–1 and n2 = –7.2 × 10–5 cm2 GW–1 and the appropriate one‐ and two‐photon figures of merit (FOM), W = 1.6 and T = 0.16, respectively, are obtained, which satisfies the demand, W > 1 and T < 1, for applications in all optical switching, where W is a one‐photon FOM, and T is a two‐photon FOM.  相似文献   

11.
In this work, flexible multifunctionalized carbon nanotube (CNT)‐based hybrid nanowires are synthesized through surface modification processes. The good dispersability of the hybrid nanowire in polar solvents facilitates directly making fine patterns with a minimum width of 40 μm for applications of flexible and stretchable circuits (FSCs). The hybrid nanowire possesses a flexible and highly conductive structure which demonstrates stable electro‐mechanical properties on polydimethylsiloxane (PDMS) substrates under large structural deformation. FSCs fabricated from the hybrid nanowires show a constant resistance of 0.096 Ω □?1 (equivalent of a resistivity 0.96 Ω μm) under repeated bending cycles. The FSCs also have a low and stable sheet resistance of 0.4 Ω □?1 for strains up to 30%, which is almost four orders of magnitude lower than that of pure CNT samples (1316 Ω □?1). Further improved stretchability and electro‐mechanical properties (0.1 Ω □?1, at the strain of 100%) are achieved with a prestrain PDMS substrate. Repeated deformation tests demonstrate the high reliability of FSCs. The observed stable and reliable electro‐mechanical performance of FSCs suggests the potential use of the material in wearable and portable electronics.  相似文献   

12.
Metallic mesh materials are promising candidates to replace traditional transparent conductive oxides such as indium tin oxide (ITO) that is restricted by the limited indium resource and its brittle nature. The challenge of metal based transparent conductive networks is to achieve high transmittance, low sheet resistance, and small perforation size simultaneously, all of which significantly relate to device performances in optoelectronics. In this work, trilayer dielectric/metal/dielectric (D/M/D) nanomesh electrodes are reported with precisely controlled perforation size, wire width, and uniform hole distribution employing the nanosphere lithography technique. TiO2/Au/TiO2 nanomesh films with small hole diameter (≤700 nm) and low thickness (≤50 nm) are shown to yield high transmittance (>90%), low sheet resistance (≤70 Ω sq?1), as well as outstanding flexural endurance and feasibility for large area patterning. Further, by tuning the surface wettability, these films are applied as easily recyclable flexible electrodes for electrochromic devices. The simple and cost‐effective fabrication of diverse D/M/D nanomesh transparent conductive films with tunable optoelectronic properties paves a way for the design and realization of specialized transparent electrodes in optoelectronics.  相似文献   

13.
Developing scalable methods to produce large quantities of high‐quality and solution‐processable graphene is essential to bridge the gap between laboratory study and commercial applications. Here an efficient electrochemical dual‐electrode exfoliation approach is developed, which combines simultaneous anodic and cathodic exfoliation of graphite. Newly designed sandwich‐structured graphite electrodes which are wrapped in a confined space with porous metal mesh serve as both electrodes, enabling a sufficient ionic intercalation. Mechanism studies reveal that the combination of electrochemical intercalation with subsequent thermal decomposition results in drastic expansion of graphite toward high‐efficiency production of graphene with high quality. By precisely controlling the intercalation chemistry, the two‐step approach leads to graphene with outstanding yields (85% and 48% for cathode and anode, respectively) comprising few‐layer graphene (1–3 layers, >70%), ultralow defects (ID/IG < 0.08), and high production rate (exceeding 25 g h?1). Moreover, its excellent electrical conductivity (>3 × 104 S m?1) and great solution dispersibility in N‐methyl pyrrolidone (10 mg mL?1) enable the fabrication of highly conductive (11 Ω sq?1) and flexible graphene films by inkjet printing. This simple and efficient exfoliation approach will facilitate the development of large‐scale production of high‐quality graphene and holds great promise for its wide application.  相似文献   

14.
Transparent conductors for the next generation of soft electronic devices need to be highly stretchable, conductive, and transparent, while an inevitable challenge lies in enhancing them simultaneously. Cost‐effective silver nanowires (AgNWs) are widely used but the conventional random network yields a high junction resistance as well as degraded conductivity in the stretched state. Here, a novel, facile, and versatile agitation‐assisted assembly approach is reported to control the orientation direction and density of AgNWs and to layer‐by‐layer deposit the AgNWs monolayer or multilayers onto the prestrained soft substrate. This electrode demonstrates an unprecedented low sheet resistance of 2.8 Ω sq?1 as well as high transparency of 85% and high stretchability of 40%. It is interesting to note that contrary to most other reports, such a device shows higher conductivity in the stretched state compared to the released state.  相似文献   

15.
A roll‐to‐roll (R2R) transfer technique is employed to improve the electrical properties of transferred graphene on flexible substrates using parylene as an interfacial layer. A layer of parylene is deposited on graphene/copper (Cu) foils grown by chemical vapor deposition and are laminated onto ethylene vinyl acetate (EVA)/poly(ethylene terephthalate). Then, the samples are delaminated from the Cu using an electrochemical transfer process, resulting in flexible and conductive substrates with sheet resistances of below 300 Ω sq?1, which is significantly better (fourfold) than the sample transferred by R2R without parylene (1200 Ω sq?1). The characterization results indicate that parylene C and D dope graphene due to the presence of chlorine atoms in their structure, resulting in higher carrier density and thus lower sheet resistance. Density functional theory calculations reveal that the binding energy between parylene and graphene is stronger than that of EVA and graphene, which may lead to less tear in graphene during the R2R transfer. Finally, organic solar cells are fabricated on the ultrathin and flexible parylene/graphene substrates and an ultra‐lightweight device is achieved with a power conversion efficiency of 5.86%. Additionally, the device shows a high power per weight of 6.46 W g?1 with superior air stability.  相似文献   

16.
Silver nanowires (AgNWs) with diameter of 90—150 nm and length of 20—50 μm were successfully synthesized by a polyol process. Graphene oxide (GO) was prepared by Hummers method, and was reduced with strong hydrazine hy-drate at room temperature. The flexible transparent conductive films (TCFs) were fabricated using the mixed cellulose eater (MCE) as matrix and AgNWs and reduced graphene oxide (rGO) as conductive fillers by the improved vacuum fil-tration process. Then, the optical, electrical and mechanical properties of the AgNWs-rGO films were investigated. The results show that for the AgNWs-rGO film produced with the deposition densities of AgNWs and rGO as 110 mg·m-2 and 55 mg·m-2, the optical transmission at 550 nm is 88.4% with Rs around 891 Ω·sq-1, whereas the optical transmission for the AgNWs-rGO film with deposition densities of AgNWs and rGO of 385 mg·m-2 and 55 mg·m-2 is 79.0% at 550 nm with Rs around 9.6 Ω·sq-1. There is little overt increase in Rs of the AgNWS-rGO film after tape tests for 200 times. The bending test results indicate that the change in Rs of AgNWs-MCE film is less than 2% even after 200 cycles of compressive or tensile bending. The excellent mechanical properties of the AgNWs-rGO film can be attributed to the burying of AgNWs and rGO at the surface of MCE  相似文献   

17.
Transparent conducting electrodes (TCEs) require high transparency and low sheet resistance for applications in photovoltaics, photodetectors, flat panel displays, touch screen devices and imagers. Indium tin oxide (ITO), or other transparent conductive oxides, have typically been used, and provide a baseline sheet resistance (RS) vs. transparency (T) relationship. However, ITO is relatively expensive (due to limited abundance of Indium), brittle, unstable, and inflexible; moreover, ITO transparency drops rapidly for wavelengths above 1000 nm. Motivated by a need for transparent conductors with comparable (or better) RS at a given T, as well as flexible structures, several alternative material systems have been investigated. Single‐layer graphene (SLG) or few‐layer graphene provide sufficiently high transparency (≈97% per layer) to be a potential replacement for ITO. However, large‐area synthesis approaches, including chemical vapor deposition (CVD), typically yield films with relatively high sheet resistance due to small grain sizes and high‐resistance grain boundaries (HGBs). In this paper, we report a hybrid structure employing a CVD SLG film and a network of silver nanowires (AgNWs): RS as low as 22 Ω/□ (stabilized to 13 Ω/□ after 4 months) have been observed at high transparency (88% at λ = 550 nm) in hybrid structures employing relatively low‐cost commercial graphene with a starting RS of 770 Ω/□. This sheet resistance is superior to typical reported values for ITO, comparable to the best reported TCEs employing graphene and/or random nanowire networks, and the film properties exhibit impressive stability under mechanical pressure, mechanical bending and over time. The design is inspired by the theory of a co‐percolating network where conduction bottlenecks of a 2D film (e.g., SLG, MoS2) are circumvented by a 1D network (e.g., AgNWs, CNTs) and vice versa. The development of these high‐performance hybrid structures provides a route towards robust, scalable and low‐cost approaches for realizing high‐performance TCE.  相似文献   

18.
Zn3As2 is an important p‐type semiconductor with the merit of high effective mobility. The synthesis of single‐crystalline Zn3As2 nanowires (NWs) via a simple chemical vapor deposition method is reported. High‐performance single Zn3As2 NW field‐effect transistors (FETs) on rigid SiO2/Si substrates and visible‐light photodetectors on rigid and flexible substrates are fabricated and studied. As‐fabricated single‐NW FETs exhibit typical p‐type transistor characteristics with the features of high mobility (305.5 cm2 V?1 s?1) and a high Ion/Ioff ratio (105). Single‐NW photodetectors on SiO2/Si substrate show good sensitivity to visible light. Using the contact printing process, large‐scale ordered Zn3As2 NW arrays are successfully assembled on SiO2/Si substrate to prepare NW thin‐film transistors and photodetectors. The NW‐array photodetectors on rigid SiO2/Si substrate and flexible PET substrate exhibit enhanced optoelectronic performance compared with the single‐NW devices. The results reveal that the p‐type Zn3As2 NWs have important applications in future electronic and optoelectronic devices.  相似文献   

19.
This paper reports the synthesis of highly conductive niobium doped titanium dioxide (Nb:TiO2) films from the decomposition of Ti(OEt)4 with dopant quantities of Nb(OEt)5 by aerosol‐assisted chemical vapor deposition (AACVD). Doping Nb into the Ti sites results in n‐type conductivity, as determined by Hall effect measurements. The doped films display significantly improved electrical properties compared to pristine TiO2 films. For 5 at.% Nb in the films, the charge carrier concentration was 2 × 1021 cm?3 with a mobility of 2 cm2 V–1 s–1 . The corresponding sheet resistance is as low as 6.5 Ω sq–1 making the films suitable candidates for transparent conducting oxide (TCO) materials. This is, to the best of our knowledge, the lowest reported sheet resistance for Nb:TiO2 films synthesized by vapour deposition. The doped films are also blue in colour, with the intensity dependent on the Nb concentration in the films. A combination of synchrotron, laboratory and theoretical techniques confirmed niobium doping into the anatase TiO2 lattice. Computational methods also confirmed experimental results of both delocalized (Ti4+) and localized polaronic states (Ti3+) states. Additionally, the doped films also functioned as photocatalysts. Thus, Nb:TiO2 combines four functional properties (photocatalysis, electrical conductivity, optical transparency and blue colouration) within the same layer, making it a promising alternative to conventional TCO materials.  相似文献   

20.
Fully solution‐processed Al‐doped ZnO/silver nanowire (AgNW)/Al‐doped ZnO/ZnO multi‐stacked composite electrodes are introduced as a transparent, conductive window layer for thin‐film solar cells. Unlike conventional sol–gel synthetic pathways, a newly developed combustion reaction‐based sol–gel chemical approach allows dense and uniform composite electrodes at temperatures as low as 200 °C. The resulting composite layer exhibits high transmittance (93.4% at 550 nm) and low sheet resistance (11.3 Ω sq‐1), which are far superior to those of other solution‐processed transparent electrodes and are comparable to their sputtered counterparts. Conductive atomic force microscopy reveals that the multi‐stacked metal‐oxide layers embedded with the AgNWs enhance the photocarrier collection efficiency by broadening the lateral conduction range. This as‐developed composite electrode is successfully applied in Cu(In1‐x,Gax)S2 (CIGS) thin‐film solar cells and exhibits a power conversion efficiency of 11.03%. The fully solution‐processed indium‐free composite films demonstrate not only good performance as transparent electrodes but also the potential for applications in various optoelectronic and photovoltaic devices as a cost‐effective and sustainable alternative electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号