首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
以Au薄膜为催化剂、ZnO与碳混合粉末为反应源,采用碳热还原法在单晶Si衬底上制备了ZnO纳米线阵列.通过扫描电子显微镜( SEM)、X射线衍射仪(XRD)、荧光分光光度计对样品的表征,研究了反应源温度对ZnO纳米线阵列的定向性和光致发光性能的影响.样品在源温度920℃条件下沿(002)方向择优生长,定向性最好,温度过低不利于ZnO纳米线阵列密集生长,而温度过高导致Zn原子二次蒸发,因而也不利于纳米线阵列的定向和择优生长;样品在源温度880℃有最强的近紫外带边发射,表明温度过高和过低都不利于ZnO晶体结构的优化;由于ZnO纳米线在缺氧氛围下生长,氧空位是缺陷存在的主要形式,因此所有样品都有较强的绿光发射.温度升高导致纳米线生长速度提高而增加了氧空位缺陷数量,从而使样品绿峰强度增强并在源温度920℃时达最大值,但温度的进一步升高可导致ZnO纳米线表面Zn元素的蒸发而降低氧空位缺陷的数量,从而抑制绿峰强度.  相似文献   

2.
采用光刻和射频磁控溅射技术在Si衬底上制备了图形化的ZnO种子层薄膜。分别采用气相榆运和水热合成法,制备了最小单元为30μm的图形化的ZnO纳米线阵列。X射线衍射(XRD)分析显示单晶纳米线阵列具有高度的c轴[001]择优取向生长性质,从扫描电子显微镜(SEM)照片看出,阵列图形完整清晰,边缘整齐,纳米线阵列在室温下光致发光(PL)谱线中在380hm左右具有强烈的紫外发射峰,可见光区域发射峰得到了抑制,证明ZnO纳米线阵列氧空位缺陷少,晶体质量高。  相似文献   

3.
采用高压脉冲激光沉积法(HP-PLD)研究了压强、金催化层厚度对钠掺杂氧化锌纳米线(ZnO:Na)生长的影响, 并制备了ZnO:Al薄膜/ZnO:Na纳米线阵列同质pn结器件。实验发现, 当金膜厚度为4.2 nm, 生长压强为3.33×104 Pa, 生长温度为875℃时, 可在单晶Si衬底上生长c轴取向性良好的ZnO纳米线阵列。X射线衍射和X射线光电子能谱综合分析证实了Na元素成功掺入ZnO纳米线晶格中。在低温(15 K)光致发光谱中, 观测到了一系列由Na掺杂ZnO产生引起的受主光谱指纹特征, 如中性受主束缚激子峰(3.356 eV, A0X)、导带电子到受主峰(3.312 eV, (e, A0))和施主受主对发光峰(3.233 eV, DAP)等。通过在ZnO:Al薄膜上生长ZnO:Na纳米线阵列形成同质结, 测得I-V曲线具有明显的整流特性, 证实了ZnO:Na纳米线具有良好的p型导电性能。  相似文献   

4.
采用无金属催化剂的简单热蒸发法,在Si(100)衬底上不同生长温度下成功地制备了高密度和大长径比的单晶ZnO纳米线。分别利用X射线衍射仪(XRD)、扫描电子显微镜(SEM-EDS)、透射电子显微镜(TEM)及荧光光谱仪表征样品的结构和发光性质。XRD和TEM研究表明,所制备的样品为沿C轴择优取向生长的单晶ZnO纳米线,具有六方纤锌矿结构。SEM和TEM研究表明,生长温度对ZnO纳米线的形貌及长径比的影响较大。当生长温度为700℃时,制备得到长径比为300(长度约为15μm,直径约为50nm)的ZnO纳米线。低于600℃时,形成花状ZnO纳米锥或 纳 米 棒。高 于700℃时,形 成 小 长 径 比 的ZnO纳米棒。此外,室温光致发光(PL)谱上出现一个强而尖锐的紫外发射峰以及一个弱而宽泛的蓝光发射峰。采用的热蒸发法制备ZnO纳米线基于气-固(VS)生长机理且该生长方法可用于大规模、低成本制备高纯度的单晶ZnO纳米材料。  相似文献   

5.
衬底的选择是得到高质量ZnO纳米棒的一个重要因素.在95℃的较低温度下用CBD方法在不同衬底(石英玻璃,硅和ITO玻璃)上生长ZnO纳米棒阵列.X射线衍射(XRD)和扫描电镜(SEM)结果显示六角形的ZnO纳米棒致密垂直地生长在衬底上,而纳米棒的平均直径和长度则与衬底的性质密切相关.各种衬底的ZnO纳米棒阵列的室温光致发光(PL)光谱都可以观测到强烈的近带边紫外发射峰,而无论是晶体还是非晶体,经常可以观察到的与缺陷相关的深能级发射都几乎观察不到.这意味着通过这种简便的低温化学方法可以获得高光学性能的ZnO纳米棒阵列.此外,不同衬底间UV发射的小幅度迁移可以用压应力来解释,并用拉曼光谱进行了进一步的证明.  相似文献   

6.
采用无金属催化剂的简单热蒸发法,在Si(100)衬底上不同生长温度下成功地制备了高密度和大长径比的单晶ZnO纳米线。分别利用X射线衍射仪(XRD)、扫描电子显微镜(SEM-EDS)、透射电子显微镜(TEM)及荧光光谱仪表征样品的结构和发光性质。XRD和TEM研究表明,所制备的样品为沿c轴择优取向生长的单晶ZnO纳米线,具有六方纤锌矿结构。SEM和TEM研究表明,生长温度对ZnO纳米线的形貌及长径比的影响较大。当生长温度为700℃时,制备得到长径比为300(长度约为15μm,直径约为50nm)的ZnO纳米线;低于600℃时,形成花状ZnO纳米锥或纳米棒;高于700℃时,形成小长径比的ZnO纳米棒。此外,室温光致发光(PL)谱上出现一个强而尖锐的紫外发射峰以及一个弱而宽泛的蓝光发射峰。采用的热蒸发法制备ZnO纳米线基于气-固(VS)生长机理且该生长方法可用于大规模、低成本制备高纯度的单晶ZnO纳米材料。  相似文献   

7.
以制备氧化铝模板为前提,采用电场辅助沉积法制备了纳米针尖阵列、纳米管阵列和纳米线阵列。利用X射线衍射仪、扫描电镜、透射电镜、能谱仪、热重分析等检测手段对制备的样品进行了相应的分析和表征。采用近场光学扫描显微镜和荧光分光光度计研究了样品的发光性能,并分析了发光机理。本实验的研究步骤、内容及得到的结论如下:(1)通过二次阳极氧化法制备了高度有序的氧化铝模板。在草酸溶液中合成了半壁氧化铝纳米管阵列,其阵列在302nm处的发射峰是由1B→1A的电子跃迁引起的,属于F+型发光。最后制备了氧化铝微米树,其树干的形成沿不同方向生长,呈明显的X交叉型生长模式。(2)制备出ZnO纳米针尖阵列。通过X射线衍射分析和高分辨图,可以判断该ZnO为多晶结构,且在[101]方向上有择优生长的趋势。随着退火温度的升高和退火时间的延长,510nm处的绿光发射带减弱,而379nm附近的带边发射增强。(3)合成了ZnO∶Tb3+纳米管阵列。通过对发射光谱图的分析,可以判断344nm处新的紫外发射带是由氧化铝模板本身发光而产生的。(4)合成了ZnO∶Eu3+纳米线阵列。高分辨透射电镜图和傅里叶变换可以断定该ZnO∶Eu3+纳米线是单晶结构,并且沿...  相似文献   

8.
采用简单水热法制备得到ZnO纳米线,通过控制反应条件调控ZnO纳米线的形貌,得到不同形态的多维ZnO纳米线。利用扫描电镜(SEM)、X射线衍射(XRD)、光致发射光谱(PL)对样品的微观形貌、晶相结构、光学性能进行表征,结果表明:样品的晶型完整,光致发射光谱图显示在384nm左右出现了紫外区发射峰,而且玉米棒状ZnO纳米线不仅出现了强烈的紫外发射峰,在可见光区域也出现了发射峰。  相似文献   

9.
Co^2+掺杂ZnO纳米线的制备与光学特性的研究   总被引:1,自引:0,他引:1  
在十六烷基三甲基溴化铵表面活性剂辅助下,通过水热合成法制备了Co2 掺杂ZnO纳米线.纳米线的直径为100~160nm,长度约为10μm.纳米线沿(001)方向生长.Co2 掺杂ZnO纳米线紫外-可见(UV-vis)吸收光谱曲线,显示掺杂的ZnO纳米线在200~300nm波段之间都有很强的紫外吸收,在波长360~370nm处显示很好的激子吸收,与体相的激子吸收峰(373nm)相比产生了蓝移.纳米线分别在385、409、433、462和495nm波段表现出发光特性,简略的讨论了其发光机制.  相似文献   

10.
采用溶液化学法实现了在Zn(NO3)2/C6H12N4混合溶液中ZnO纳米线在AZO薄膜修饰过衬底上生长。AZO薄膜由射频磁控溅射法制备,通过溅射时间和基底温度的变化改变薄膜形态,重点研究了不同薄膜形态对ZnO纳米线形貌和结构的影响,最终在溅射2h、基底温度250℃晶种上得到垂直于衬底、高度平行取向的ZnO纳米线阵列。在此基础上研究了不同形貌ZnO纳米线阵列的紫外光电导性能差异。结果表明,垂直生长的纳米线较倒伏纳米线紫外响应迅速,分析认为是紫外光照下曝光面积不同造成的。  相似文献   

11.
Fe-doped ZnO dilute magnetic semiconductor (DMS) nanowire arrays were fabricated in anodic aluminum oxide (AAO) membranes using electro-codeposition followed by long-time anneal process. The morphology, chemical composition and crystal structure were characterized by field emission scanning electron microscope (FE-SEM), high resolution transmission electron microscope (HRTEM) equipped with an energy dispersive x-ray spectrometer, and X-ray diffraction (XRD) spectroscopy. The results prove that the Fe has been successfully doped in the lattice of ZnO nanowire arrays and the estimated Fe atomic ratio is around 22%. Micro-superconducting quantum interference device (SQUID) shows that the nanowire arrays exhibit room temperature (300 K) ferromagnetic and anisotropic ferromagnetic behavior which may be a consequence of the easy magnetization direction along the wire axes and magnetostatic interaction.  相似文献   

12.
Well aligned ZnO nanowire arrays with high crystal quality were grown on Si substrates at a low temperature (50 degrees C) by hydrothermal method using a pre-formed ZnO seed layer. ZnO seeds were prepared via radio-frequency magnetron sputtering onto Si substrates. The morphologies of the ZnO nanowire arrays were shown by field emission scanning electron microscopy. X-ray diffraction spectra showed that the full width at the half maximum of the (0002) peak of the nanowire arrays without any heat treatment was only 0.07 degrees, indicating very high crystal quality. Furthermore, the room-temperature photoluminescence spectra of the ZnO nanowire arrays exhibited excellent UV emission. The special micro/nano surface structure of the ZnO nanowire arrays can enhance the dewettability for surfaces modified via low surface energy materials such as long chain fluorinated organic compounds. The surface of the ZnO nanowire arrays is also found to be superhydrophobic with a contact angle of 165 degrees +/- 1 degrees, while the sliding angle is 3 degrees.  相似文献   

13.
ZnO nanowire arrays were synthesized on zinc foil by a simple thermal evaporation process at relatively low temperature. Morphology and size controlled synthesis of the ZnO nanostructures was achieved by variation of the synthesis temperature, reaction time and the surface roughness of the substrate. A gas-solid and self-catalytic liquid-solid mechanism is proposed for the growth of nanowires at different temperatures. High-resolution transmission electron microscopy (HRTEM) showed that the as-grown nanowires were of single crystal hexagonal wurtzite structure, growing along the [101] direction. Photoluminescence exhibited strong UV emission at ~382?nm and a broad green emission at ~513?nm with 325?nm excitation. Raman spectroscopy revealed a phonon confinement effect when compared with results from bulk ZnO. The nanowire arrays also exhibited a field emission property.  相似文献   

14.
Ordered ZnO nanowire arrays embedded in anodic aluminum oxide (AAO) membranes were fabricated by electrochemical deposition of Zn(NO3)2 H3BO3 solution in a boiling bath. Scanning electron microscope (SEM) and transmission electron microscope (TEM) observation results show that the polycrystalline ZnO nanowires with diameters around 100 nm were uniformly assembled into the ordered nanochannels of the AAO. The results of the investigation into photoluminescence (PL) and electronic paramagnetic resonance (EPR) measurements reveal that the interfaces between the ZnO nanowires and the pore walls of the AAO create a lot of oxygen vacancies, which are responsible for the green light emission (peaking around 512 nm) and the huge enhancement of the PL emission.  相似文献   

15.
Well-aligned ZnO nanorod arrays with uniform diameters and lengths have been fabricated on a Si substrate by simple thermal evaporation of Cu-Zn alloy powders in the presence of oxygen without using a template, catalyst, or pre-deposited ZnO seed layer. The ZnO nanorods are characterized by X-ray diffraction, electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy and the growth mechanism is suggested. The nanorods have a single-crystal hexagonal structure and grow along the (0001) direction. Their diameters range from 200 to 400 nm and the lengths are up to several micrometers. The photoluminescence (PL) and Raman spectra disclose the optical properties of the products. The PL spectra show intense near-band ultraviolet emission at 378 nm from the nanorod arrays. The well-aligned ZnO nanorod arrays have a low turn-on field of 6.1 V/microm, suggesting good field emission properties. The simple synthesis methodology in conjunction with the good field emission and optical properties make the study both scientifically and technologically interesting.  相似文献   

16.
采用磁控溅射法在较低基底温度下(200 ℃)制备了有序碲纳米线阵列, 并利用X射线衍射、扫描电镜和透射电镜对所制备薄膜进行了相、形貌和微观结构分析。结果表明, 所制备的纳米线阵列由单晶碲纳米线组成, 单根碲纳米线具有针状形貌, 并沿[101]晶向生长, 平均直径和长度分别为100 nm和1 μm。氩气压力和基底温度均对碲纳米线阵列的形成具有重要影响, 以平衡碲原子沿[101]晶向和(101)晶面方向的扩散和生长。提出了碲纳米线阵列的生长机制, 包括吸附、结合、成核和生长等过程。  相似文献   

17.
Ordered ZnO nanowire arrays embedded in anodic aluminum oxide (AAO) membranes were fabricated by electrochemical deposition of Zn(NO3)2+H3BO3 solution in a boiling bath. Scanning electron microscope (SEM) and transmission electron microscope (TEM) observation results show that the polycrystalline ZnO nanowires with diameters around 100 nm were uniformly assembled into the ordered nanochannels of the AAO. The results of the investigation into photoluminescence (PL) and electronic paramagnetic resonance (EPR) measurements reveal that the interfaces between the ZnO nanowires and the pore walls of the AAO create a lot of oxygen vacancies, which are responsible for the green light emission (peaking around 512 nm) and the huge enhancement of the PL emission.  相似文献   

18.
Facile route to well-aligned ZnO nanowire arrays   总被引:2,自引:0,他引:2  
P.G. Li  X. Wang 《Materials Letters》2009,63(8):718-720
Well-aligned ZnO nanowire arrays were fabricated on the photoresist SPR6112-B coated (111) Si substrates by a facile vapor transport and condensation method. The structure and growth mechanism of the ZnO nanowire arrays were investigated in detail. It is found that the immiscibility of the zinc oxide-carbon system is responsible for the self-catalysis vapor-liquid-solid (VLS) growth of nanowire arrays. The photoluminescence measurement only presents a strong near-band-edge ultraviolet (UV) emission band centered at 379.6 nm (3.266 eV), exhibiting that the nanowire arrays are of stoichiometric composition and have good optical performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号