首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
超深井水基钻井液高温高压流变性试验研究   总被引:6,自引:1,他引:5  
钻井液性能对于确保超深井的安全、快速钻进具有十分重要的作用.使用M7500型高温高压流变仪,测定了超低渗透聚磺水基钻井液在高温高压下的流变性能.试验结果表明:温度对水基钻井液流变性的影响比压力大得多,高温下压力的影响一般可以忽略;温度升高,塑性黏度呈指数规律下降.能承受的极限温度在210℃左右.温度升高,流性指数增大,稠度系数减小;压力增大,流性指数减小,稠度系数增大.运用回归分析方法建立了预测井下高温高压条件下塑性黏度及流性指数"和稠度系数K的数学模型,该模型应用方便,适合在生产现场应用.计算结果表明,胜科1井超低渗透聚磺水基钻井液在高温高压时更适合宾汉模式.  相似文献   

2.
温度和膨润土含量对水基钻井液流变性的影响   总被引:4,自引:1,他引:3  
针对高密度钻井液在制备过程中,温度和膨润土含量对钻井液流变性影响较大的情况,采用正交试验方法研究了不同温度、不同膨润土加量条件下水基钻井液流变性的变化。试验证实,膨润土含量为2%~6%,温度为80℃和100℃时减稠明显;温度为80~140℃,膨润土含量为2%和3%时减稠明显。结果表明,膨润土含量变化明显影响水基钻井液的高温高压流变性,而温度主要影响活性固体颗粒含量变化,从而影响水基钻井液流变性。  相似文献   

3.
超深井、特深井井筒温度和压力分布范围宽,钻井液流变性受超高温超高压影响显著,基于常规流变模式的井筒压力预测误差较大,文章通过开展温度为20~220℃、压力为0.1~200 MPa的水基钻井液和油基钻井液流变性测试实验,提出了不同温度和压力范围内的钻井液分段流变模式优选方法,建立了考虑多因素综合影响的钻井井筒压力精确预测模型。研究结果表明,随着温度和压力的变化,钻井液流变曲线的变化规律不一致,单一流变模式无法完全表征钻井液的流变特性;赫巴流变模式对100℃以下的水基钻井液和140℃以下的油基钻井液的流变性适用性更好,其他温度范围内罗斯流变模式的适用性更好;分段流变模式对井底压力的影响较为明显。将模型的计算结果与实测数据进行对比,发现井底压力预测误差在0.3 MPa以内,立管压力预测误差小于0.6 MPa;相对于油基钻井液,水基钻井液中的井筒压力预测误差更小。研究结果能够为超深井、特深井井筒压力精确预测奠定理论基础。  相似文献   

4.
水基钻井液体系在低温条件下的流变性探讨   总被引:4,自引:0,他引:4  
探讨了海洋钻探中常用的几种水基钻井液体系在深水钻井过程中低温条件下的流变性变化情况。试验结果表明,随着温度的降低,钻井液体系的粘、切力均有明显的上升。  相似文献   

5.
海上特别是深水钻井作业井筒温度压力准确预测是保证钻井作业安全以及钻井/钻井液设计与评估的重要参数。由于海水和地层双重影响井筒温度变化较大,而钻井液物性(密度、流变性等)受井筒流动传热的影响较大,同样钻井液物性的改变反过来也会影响井筒温度压力的准确预测,如果钻井液参数视为常数,按照地面条件下钻井液物性预测井底压力和温度则其精度难以保证,在钻井液密度敞口非常小的地层,可能会产生井漏、溢流等井下复杂或事故。本文分别对深井水基钻井液的密度、黏度等物性参数预测模型进行了优选,建立了深井钻井井筒流动传热模型预测井筒压力温度,并分析了工艺参数对井底压力温度的影响。本研究为准确井底压力温度、预防钻井复杂事故,保障海上深水安全高效钻井具有较高的指导价值。  相似文献   

6.
抗高温水基钻井液超高温高压流变性研究   总被引:7,自引:2,他引:5  
为了解超高温高压条件下钻井液的流变规律,采用M7500型超高温高压流变仪测定了胜科1井四开井段抗高温钻井液的超高温高压流变性并进行了分析研究.试验结果表明,抗高温钻井液的表观黏度、塑性黏度和动切力随温度的升高而降低,随压力的增加而增大;温度对流变性的影响远比压力的影响大,但随着温度的升高,压力的影响逐渐增大.流变曲线拟合结果表明.赫切尔一巴尔克莱模式能够比较准确地描述超高温高压条件下抗高温钻井液的流变性.在大量现场钻井液流变性试验的基础上,运用回归分析方法建立了能够准确预测井下超高温高压条件下钻井液表观黏度的数学模型.该研究为超高温钻井液技术在胜科1井的成功应用提供了理论指导.  相似文献   

7.
水基钻井液高温流变特性研究   总被引:4,自引:1,他引:3  
在深井钻井中,钻井液流变性受温度的影响大。通过研究温度时钻井液流变性的影响,对深井安全钻井具有重要意义。使用RS6000型高温高压流变仪对抗高温水基钻井液的流变性能进行了测定,分别运用宾汉、幂律、卡森、H-B和罗-斯模式对实验数据进行回归分析处理,为优选描述钻井液高温流变特性的流变模式提供依据。回归分析表明:在高温高压条件下,罗-斯模式相关性最好,宾汉模式次之,幂律模式最差。同时,研究了温度对表观黏度的影响,建立了预测井下高温条件下钻井液表观黏度的数学模型,为深井安全钻井提供参考。  相似文献   

8.
由于地层温度、压力的影响,预测水基钻井液井下当量静态密度比较困难。水基绒囊钻井液的囊核包裹一定量气体,温度和压力不仅影响基液密度,而且影响囊核体积,使得井下当量静态密度变化规律更加复杂。室内研究首先用PVT实验仪测定密度为0.85 g/cm3的无固相绒囊钻井液在1~20 MPa、30~130 ℃下的密度,然后利用多元回归法处理测定的220个密度数据点,建立绒囊钻井液不同井深时的井下静态密度预测模型。此模型相关系数0.96、相对误差小于5%,可信度高。用该模型计算2 500 m井深时绒囊钻井液密度与磨80-C1试验井实际测量结果比较,相对误差小于4%,表明此模型可预测井下水基绒囊钻井液的当量静态密度。  相似文献   

9.
为了解O/W水平井钻井液在井筒内的流变性能,对胜利油田所使用的O/W水平井钻井液体系在温度作用下的流变性进行了试验研究,规定了该体系钻井液在不同温度下的流变特性,对试验数据进行回归处理,得出了O/W水平井钻井液在井下温度条件下流变参数的计算模式,为现场监测水平井钻井液的流变特性,采取相应的处理措施提供了科学依据。  相似文献   

10.
李雨洋 《石化技术》2023,(6):119-121
为了了解抗高温水基钻井液的作用机理以及性能,从高温对水基钻井液的影响以及水基钻井液的高温作用机理出发,开展抗高温水基钻井液作用机理分析,从流变性和高温高压流变性出发,对抗高温水基钻井液的性能进行研究。研究表明:高温是影响钻井液性能的重要因素,随着老化温度的逐渐提升,钻井液的动切力将会呈现先降低后升高的趋势;在高温高压条件下,抗高温水基钻井液仍然具有很好的流变性,其性能受高温高压环境的影响相对较小。  相似文献   

11.
钻井液高温高压流变参数预测分析是深井超深井钻井液性能调整、水力参数计算的基础,建立了一种基于黏度计读值预测的钻井液高温高压流变性分析方法。首先,开展了高温高压流变实验,基于实测数据分析了旋转黏度计读值随温度、压力的变化规律。然后,引入比例因子将各转速测量读值归一化,运用数值方法分别分析了恒压变温、恒温变压情况下比例因子与温度、压力的变化关系,先建立了高温高压下比例因子预测模型,随后建立了通用的高温高压黏度计读值预测模型,同时给出了高温高压流变模型优选与流变参数计算方法。通过多组实验数据计算对比,运用该方法计算所得黏度计读值与实测值吻合很好。进而运用该方法分析了一组实测钻井液在井筒内的流变参数变化情况,与传统方法相比,该方法不再局限于常规流变参数(塑性黏度、表观黏度等)预测,其可以扩展到所有流变模型的高温高压流变参数预测中。   相似文献   

12.
井眼内钻井液密度是进行各种钻井施工和设计的必要的基础数据,高温高压环境下的超深井钻井液密度不再是一个常数,而是随温度和压力的变化而变化,因此有必要对超深井钻井中高温高压对钻井液密度的影响进行研究。利用高温高压钻井液密度模拟实验装置,采用胜科1井现场配制的超深井钻井液,测量了温度、压力对超深井水基钻井液密度的影响特性,根据测量结果,建立了温度、压力影响下的水基钻井液密度预测模型。结果表明,水基钻井液密度受温度变化影响比受压力变化影响大,随着温度、压力的增大,钻井液密度降幅较大,同时,高温高压下钻井液更具有可压缩性。建立的预测模型为合理确定现场钻井液密度范围提供了一种新方法。  相似文献   

13.
高温高压油基钻井液乳化稳定性评价仪主要由高温高压不锈钢腔体、测试电极、温度控制系统、压力控制系统以及测试系统组成,高温电极选用PEEK材料,测试的电极距离设计为1.5 mm,电极的放电电压最高设计为2000 V,温度控制系统以T89C51 单片机为核心,采用铸铝电加热器包裹在高温高压不锈钢腔体外部进行加热,压力控制系统采用液压方式加压。对仪器的稳定性进行了测试并与常温常压下电稳定性测试仪进行了对比,结果表明,该仪器可以实现高温高压油基钻井液乳化稳定性评价,并且测试数据稳定、可靠,测量误差不大于5%。研究了油基钻井液在高温高压下乳化稳定性的规律,当维持压力不变时,随着温度的升高,破乳电压值呈下降趋势;当温度低于120 ℃时,随着压力的升高,破乳电压值有所减小,当温度达到120 ℃以上时,破乳电压值基本不随压力的变化而发生改变。   相似文献   

14.
东方29-1-6井是勘探三号半潜式平台承钻的一口高温高压探井,不但存在着高温和高压影响钻井液稳定性的问题,还存在着由于地层孔隙压力与破裂压力接近,造成安全窗口狭窄而形成的井控风险。在钻井作业过程中,针对Φ212.7 mm(8-3/8")井段地层高温高压的特点,平台现场通过精细化管理和操作,优化了钻具组合,严密监控各项钻井参数,尤其是钻井液的井口返出温度。针对不同实时情况采取对应的应对措施以保持钻井液在"双高"下的良好流变性和稳定性。在弃井回收阶段做好注水泥塞等措施,安全、优质地完成了钻井任务,积累了现场施工经验,可供该区域及国内海洋高温高压钻井借鉴。  相似文献   

15.
水基钻井液高温高压密度特性研究   总被引:1,自引:1,他引:0  
水基钻井液的密度在高温高压条件下不再是一个常数。采用高温高压静态密度测定装置,研究了不同密度水基钻井液的静态密度随温度和压力的变化规律,回归其变化关系式,建立起了水基钻井液静态密度随温度和压力而变化的数学模型,并对影响高温高压下水基钻井液密度变化的因素进行了分析。得出了温度对水基钻井液的密度影响最大,压力对其影响较小的结论。提出了随着温度的升高,压力对水基钻井液静态密度的变化影响变大的观点。准确预测钻井液在高温高压下的真实密度,有利于准确预测和控制井底压力,从而保证油气井在窄安全钻井液密度窗口下安全钻进。  相似文献   

16.
实验分别选取了塔里木油田低、中、高密度具有代表性的几口深井的水基磺化钻井液,使用高温高压流变仪Fann 75,对高温高压下温度及压力对该钻井液性能的影响进行了研究.结果表明,在180℃以下,表观黏度随温度升高而降低,在180~230℃范围内表观黏度随温度升高而升高;塑性黏度在50~230℃范围内随温度升高而降低;动切力在100℃以内随温度升高而降低,在100~230 ℃范围内随温度升高而升高;压力和温度同时变化时,水基磺化钻井液各流变参数的变化规律与温度对各参数的影响规律相同,温度是影响钻井液流变性的主要因素.  相似文献   

17.
南海西部海域属世界三大高温高压并存的地区之一,且存在地温梯度高、压力高、压力窗口窄等特点。要在该海域打井必须解决在高温高压共同作用下对钻井液性能的影响,确保高温高压井的安全、快速钻进。文中简单分析了高温高压条件下水基钻井液技术的难点,高温对钻井液性能的影响和作用机理,通过对南海西部海域从1984年至2004年间所钻19口高温高压探井的实践经验和科研成果进行归纳,总结出南海西部海域高温高压井钻井液技术的特点,探讨适合南海西部海域高温高压井特点的钻井液技术。  相似文献   

18.
中国南海莺琼盆地具有温度梯度高、地层压力高、安全密度窗口窄的特点,在高温高压状态下经常出现钻井液流变性控制困难、井漏、电测遇阻和储层污染等问题。根据该区块地层的特点,通过大量的室内研究,在聚磺体系的基础上,引入甲酸钾作为抑制剂,优选了磺化材料及抗温聚合物,在提高抑制性的同时,有效地降低了体系的活度,通过加重剂的优化,改善钻井液的流变性,同时使其具有低的高温高压失水,密度2.4 g/cm3的体系抗温可达200℃。现场应用结果表明,该钻井液体系具有良好的抗温性和流变性,高温高压失水低,泥饼质量好,电测结果显示,该钻井液体系具有良好的储层保护效果。  相似文献   

19.
大北12X井是2018年塔里木油田的一口高温高压评价井,位于库车坳陷克拉苏构造带大北段大北12号构造东高点,该区块库姆格列木群膏盐岩段(4267~5287 m)普遍为高压~超高压,局部存在高压盐水层、漏层。钻井过程中,易出现井壁失稳、漏失、盐水侵等复杂技术难题。针对该区域的地质特点和作业要求,分析了高温高压作业条件下油基钻井液体系的技术难点,优选出抗高温高密度油基钻井液体系配方,并且通过室内实验,模拟高温高压井段作业可能出现的风险,进行了系统的工况模拟评价。实验结果表明,抗高温高密度油基钻井液体系性能稳定,破乳电压为1562 V、高温高压滤失量为1 mL,体系抗30%体积分数的近饱和NaCl盐水污染,污染后体系表观黏度变化小于10%,滤失量小于2 mL,破乳电压为1002 V。体系抗温稳定能力强,室内实验170℃老化10 d后体系流变性能稳定,沉降因子为0.522。现场应用表明,抗高温高密度油基钻井液体系能够解决塔里木油田库车坳陷克拉苏构造带高温高压超高压盐膏层作业难题。四开井段,钻井液密度为2.43 g/cm3,油基钻井液保持了良好的钻井液流态,较低的黏度、切力及ECD等优良参数,未造成黏度、切力过高引起井漏等复杂情况。该井钻遇盐膏层厚度达2135 m,油基钻井液抗石膏污染能力强,流变性能稳定。   相似文献   

20.
深水作业中钻井液在低温高压条件下的流变性   总被引:3,自引:0,他引:3  
在深水钻井作业中,安全密度窗口非常窄,井下压力控制是面临的主要难题之一。随着水深的不断增加,环境温度随之降低,钻井液的黏度和切力随之升高;同时,由上千米隔水管内的钻井液所附加的静液柱压力使井底压力远大于浅水作业时相同井深的井底压力。这些因素的共同作用使得当量循环密度随之增加,进一步加大井底压力控制的难度。选择用于深水钻井的一种水基和一种合成基钻井液为研究对象,分别改变温度和压力等实验条件,利用FANN公司的ix77流变仪测量了钻井液在低温、高压下的流变参数,以此找出深水条件下钻井液流变性随温度和压力的变化规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号